学习总结
- 回顾【图神经网络DGL】数据封装和消息传递机制 的数据封装,在做异构图神经网络时,DGL比PyG方便很多(尽管PyG已经支持了异构图Aminer和栗子,但对图结构数据做批处理还是需要自己实现)。
- networkx工具的使用:https://networkx.org/documentation/stable/auto_examples/graph/plot_karate_club.html
一、题目描述
Karate club是一个社交网络,包括34个成员,并在俱乐部外互动的成员之间建立成对链接。 俱乐部随后分为两个社区,由教员(节点0)和俱乐部主席(节点33)领导。 网络以如下方式可视化,并带有表示社区的颜色(如下图)。
任务:预测给定社交网络本身每个成员倾向于加入哪一侧的社区(0或33)。
二、步骤
2.1 在DGL中创建网络图
这里可以复习上一节的【图神经网络DGL】数据封装和消息传递机制 的数据封装。
# -*- coding: utf-8 -*-
"""
Created on Fri Dec 17 21:16:42 2021
@author: 86493
"""
import dgl
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.animation as animation
import matplotlib.pyplot as plt
def build_karate_club_graph():
# All 78 edges are stored in two numpy arrays. One for source endpoints
# while the other for destination endpoints.
src = np.array([1, 2, 2, 3, 3, 3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 10, 10,
10, 11, 12, 12, 13, 13, 13, 13, 16, 16, 17, 17, 19, 19, 21, 21,
25, 25, 27, 27, 27, 28, 29, 29, 30, 30, 31, 31, 31, 31, 32, 32,
32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 33, 33, 33, 33, 33, 33,
33, 33, 33, 33, 33, 33, 33, 33, 33, 33])
dst = np.array([0, 0, 1, 0, 1, 2, 0, 0, 0, 4, 5, 0, 1, 2, 3, 0, 2, 2, 0, 4,
5, 0, 0, 3, 0, 1, 2, 3, 5, 6, 0, 1, 0, 1, 0, 1, 23, 24, 2, 23,
24, 2, 23, 26, 1, 8, 0, 24, 25, 28, 2, 8, 14, 15, 18, 20, 22, 23,
29, 30, 31, 8, 9, 13, 14, 15, 18, 19, 20, 22, 23, 26, 27, 28, 29, 30,
31, 32])
# Edges are directional in DGL; Make them bi-directional.
u = np.concatenate([src, dst])
v = np.concatenate([dst, src])
# Construct a DGLGraph
return dgl.DGLGraph((u, v))
G = build_karate_club_graph()
print('We have %d nodes.' % G.number_of_nodes())
print('We have %d edges.' % G.number_of_edges())
# We have 34 nodes.
# We have 156 edges.
import networkx as nx
# 由于实际图形是无向的,因此我们去掉边的方向,以达到可视化的目的
nx_G = G.to_networkx().to_undirected()
# 为了图更加美观,我们使用Kamada-Kawaii layout
pos = nx.kamada_kawai_layout(nx_G)
nx.draw(nx_G, pos, with_labels=True, node_color=[[.7, .7, .7]])
后面代码中我们就把draw
的这块封装在一个visual
函数内。
2.2 将特征分配给节点or边
GNN将特征与节点和边关联进行训练,本题分类中,每个节点对应一个独热编码。在DGL中,可通过一个特征向量为所有的节点添加特征,该张量沿着第一维处理。
# 对角矩阵
G.ndata['feat'] = torch.eye(34)
print(torch.eye(34))
# 打印出label为2的节点的特征
a = G.nodes[2].data['feat']
print(a)
# 打印出label为5和6的节点的特征
b = G.nodes[[5, 6]].data['feat']
print(b)
即如下创建一个对角矩阵:
tensor([[1., 0., 0., ..., 0., 0., 0.],
[0., 1., 0., ..., 0., 0., 0.],
[0., 0., 1., ..., 0., 0., 0.],
...,
[0., 0., 0., ..., 1., 0., 0.],
[0., 0., 0., ..., 0., 1., 0.],
[0., 0., 0., ..., 0., 0., 1.]])
结果为:
tensor([[0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
tensor([[0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
不过这里我们可以使用nn.embedding
:
## 对 34 个节点做 embedding
embed = nn.Embedding(34, 5) # 34 nodes with embedding dim equal to 5
print(embed.weight)
G.ndata['feat'] = embed.weight
# print out node 2's input feature
print(G.ndata['feat'][2])
# print out node 10 and 11's input features
print(G.ndata['feat'][[10, 11]])
2.3 定义一个图卷积神经网络
关于GCN的原理可看原作者的博客:https://tkipf.github.io/graph-convolutional-networks/
图卷积层的数学定义: h i ( l + 1 ) = σ ( b ( l ) + ∑ j ∈ N ( i ) 1 c j i h j ( l ) W ( l ) ) h_i^{(l+1)} = \sigma(b^{(l)} + \sum_{j\in\mathcal{N}(i)}\frac{1}{c_{ji}}h_j^{(l)}W^{(l)}) hi(l+1)=σ(b(l)+j∈N(i)∑cji1hj(l)W(l))
其中:
- N ( i ) \mathcal{N}(i) N(i) 是节点 i i i的邻居节点集合;
- c j i c_{ji} cji 是节点 i i i和节点 j j j的度分别的开根号的乘积,即 c j i = ∣ N ( j ) ∣ ∣ N ( i ) ∣ c_{ji} = \sqrt{|\mathcal{N}(j)|}\sqrt{|\mathcal{N}(i)|} cji=∣N(j)∣∣N(i)∣);
- σ \sigma σ 是一个激活函数
如果是有向边带权图,则是加权的图卷积: h i ( l + 1 ) = σ ( b ( l ) + ∑ j ∈ N ( i ) e j i c j i h j ( l ) W ( l ) ) h_i^{(l+1)} = \sigma(b^{(l)} + \sum_{j\in\mathcal{N}(i)}\frac{e_{ji}}{c_{ji}}h_j^{(l)}W^{(l)}) hi(l+1)=σ(b(l)+j∈N(i)∑cjiejihj(l)W(l))
其中:
- e j i e_{ji} eji是节点 j j j到节点 i i i的边权值;
- 初始时可以设
c
j
i
c_{ji}
cji为
norm='none'
,然后在前向传播forward计算时赋值为 e j i e_{ji} eji; ~dgl.nn.pytorch.EdgeWeightNorm
对标量边权值进行归一化。
一般来说,节点通过message
函数传递消息,然后通过reduce
函数进行数据聚合(下面栗子的聚合是通过sum
)。
(1)第一层将大小为34的输入特征转换为隐藏的大小为5。
(2)第二层将隐藏层转换为大小为2的输出特征,对应Karate club中的两个组。
from dgl.nn.pytorch import GraphConv
class GCN(nn.Module):
def __init__(self, in_feats, hidden_size, num_classes):
super(GCN, self).__init__()
self.conv1 = GraphConv(in_feats, hidden_size)
self.conv2 = GraphConv(hidden_size, num_classes)
def forward(self, g, inputs):
h = self.conv1(g, inputs)
h = torch.relu(h)
h = self.conv2(g, h)
return h
对应的网络结构很简单:
GCN(
(gcn1): GCNLayer(
(linear): Linear(in_features=34, out_features=5, bias=True)
)
(gcn2): GCNLayer(
(linear): Linear(in_features=5, out_features=2, bias=True)
)
)
2.4 输出准备和初始化
# 数据准备和初始化
inputs = G.ndata['feat']
labeled_nodes = torch.tensor([0, 33])
labels = torch.tensor([0, 1])
2.5 训练和可视化
def train(G, inputs, embed, labeled_nodes,labels):
net = GCN(5,5,2)
import itertools
optimizer = torch.optim.Adam(itertools.chain(net.parameters(), embed.parameters()), lr=0.01)
all_logits = []
for epoch in range(30):
logits = net(G, inputs)
# we save the logits for visualization later
# detach代表从当前计算图中分离下来的
all_logits.append(logits.detach())
logp = F.log_softmax(logits, 1)
# 半监督学习, 只使用标记的节点计算loss
loss = F.nll_loss(logp[labeled_nodes], labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Epoch %d | Loss: %.4f' % (epoch, loss.item()))
print(all_logits)
为了可视化,并且在train
函数中加入draw
函数,这里还用到了生成动态图的animation.FuncAnimation
函数。
相反,由于模型为每个节点生成大小为2的输出特征,因此我们可以通过在2D空间中绘制输出特征来可视化。 下面的代码使训练过程从最初的猜测(根本没有正确分类节点)到最终的结果(线性可分离节点)动画化。
def draw(i):
cls1color = '#00FFFF'
cls2color = '#FF00FF'
pos = {}
colors = []
for v in range(34):
pos[v] = all_logits[i][v].numpy()
cls = pos[v].argmax()
colors.append(cls1color if cls else cls2color)
ax.cla()
ax.axis('off')
ax.set_title('Epoch: %d' % i)
nx.draw_networkx(nx_G.to_undirected(), pos, node_color=colors,
with_labels=True, node_size=300, ax=ax)
nx_G = G.to_networkx().to_undirected()
fig = plt.figure(dpi=150)
fig.clf()
ax = fig.subplots()
for i in range(30):
draw(i)
plt.pause(0.2)
ani = animation.FuncAnimation(fig, draw, frames=len(all_logits), interval=200)
ani.save('change1.gif', writer='imagemagick', fps=10)
plt.show()
以上动画显示了经过一系列训练后,模型如何正确预测社区。
Reference
(1)使用python中的FuncAnimation画Gif图#1
(2)https://blog.csdn.net/Together_CZ/article/details/106504531
(3)https://www.pianshen.com/article/7142171595/
(4)dgl官方文档:https://docs.dgl.ai/tutorials/blitz/1_introduction.html#sphx-glr-tutorials-blitz-1-introduction-py
(5)阿里苘郁蓁知乎:https://zhuanlan.zhihu.com/p/93828551?hmsr=toutiao.io(不过注意要版本旧了,需要改,见头条评论,fn
在最新内置包有)
(6)现在图神经网络框架里,DGL和PyG哪个好用
(7)https://ogb.stanford.edu/docs/home/#dataloader