【图神经网络DGL】GCN在Karate Club上的实战(消息传递范式 | 生成训练可视化动图)

学习总结

  • 回顾【图神经网络DGL】数据封装和消息传递机制 的数据封装,在做异构图神经网络时,DGL比PyG方便很多(尽管PyG已经支持了异构图Aminer和栗子,但对图结构数据做批处理还是需要自己实现)。
  • networkx工具的使用:https://networkx.org/documentation/stable/auto_examples/graph/plot_karate_club.html

一、题目描述

Karate club是一个社交网络,包括34个成员,并在俱乐部外互动的成员之间建立成对链接。 俱乐部随后分为两个社区,由教员(节点0)和俱乐部主席(节点33)领导。 网络以如下方式可视化,并带有表示社区的颜色(如下图)。

任务:预测给定社交网络本身每个成员倾向于加入哪一侧的社区(0或33)。
在这里插入图片描述

二、步骤

2.1 在DGL中创建网络图

这里可以复习上一节的【图神经网络DGL】数据封装和消息传递机制 的数据封装。

# -*- coding: utf-8 -*-
"""
Created on Fri Dec 17 21:16:42 2021

@author: 86493
"""
import dgl
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.animation as animation
import matplotlib.pyplot as plt

def build_karate_club_graph():
    # All 78 edges are stored in two numpy arrays. One for source endpoints
    # while the other for destination endpoints.
    src = np.array([1, 2, 2, 3, 3, 3, 4, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 10, 10,
                    10, 11, 12, 12, 13, 13, 13, 13, 16, 16, 17, 17, 19, 19, 21, 21,
                    25, 25, 27, 27, 27, 28, 29, 29, 30, 30, 31, 31, 31, 31, 32, 32,
                    32, 32, 32, 32, 32, 32, 32, 32, 32, 33, 33, 33, 33, 33, 33, 33,
                    33, 33, 33, 33, 33, 33, 33, 33, 33, 33])
    dst = np.array([0, 0, 1, 0, 1, 2, 0, 0, 0, 4, 5, 0, 1, 2, 3, 0, 2, 2, 0, 4,
                    5, 0, 0, 3, 0, 1, 2, 3, 5, 6, 0, 1, 0, 1, 0, 1, 23, 24, 2, 23,
                    24, 2, 23, 26, 1, 8, 0, 24, 25, 28, 2, 8, 14, 15, 18, 20, 22, 23,
                    29, 30, 31, 8, 9, 13, 14, 15, 18, 19, 20, 22, 23, 26, 27, 28, 29, 30,
                    31, 32])
    # Edges are directional in DGL; Make them bi-directional.
    u = np.concatenate([src, dst])
    v = np.concatenate([dst, src])
    # Construct a DGLGraph
    return dgl.DGLGraph((u, v))
G = build_karate_club_graph() 
print('We have %d nodes.' % G.number_of_nodes()) 
print('We have %d edges.' % G.number_of_edges())
# We have 34 nodes.
# We have 156 edges.

import networkx as nx
# 由于实际图形是无向的,因此我们去掉边的方向,以达到可视化的目的
nx_G = G.to_networkx().to_undirected()
# 为了图更加美观,我们使用Kamada-Kawaii layout 
pos = nx.kamada_kawai_layout(nx_G)
nx.draw(nx_G, pos, with_labels=True, node_color=[[.7, .7, .7]])

在这里插入图片描述
后面代码中我们就把draw的这块封装在一个visual函数内。

2.2 将特征分配给节点or边

GNN将特征与节点和边关联进行训练,本题分类中,每个节点对应一个独热编码。在DGL中,可通过一个特征向量为所有的节点添加特征,该张量沿着第一维处理。

# 对角矩阵
G.ndata['feat'] = torch.eye(34)
print(torch.eye(34))

# 打印出label为2的节点的特征
a = G.nodes[2].data['feat']
print(a)
# 打印出label为5和6的节点的特征
b = G.nodes[[5, 6]].data['feat']
print(b)

即如下创建一个对角矩阵:

tensor([[1., 0., 0.,  ..., 0., 0., 0.],
        [0., 1., 0.,  ..., 0., 0., 0.],
        [0., 0., 1.,  ..., 0., 0., 0.],
        ...,
        [0., 0., 0.,  ..., 1., 0., 0.],
        [0., 0., 0.,  ..., 0., 1., 0.],
        [0., 0., 0.,  ..., 0., 0., 1.]])

结果为:

tensor([[0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])
tensor([[0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
         0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]])

不过这里我们可以使用nn.embedding

    ## 对 34 个节点做 embedding
    embed = nn.Embedding(34, 5)  # 34 nodes with embedding dim equal to 5
    print(embed.weight)
    G.ndata['feat'] = embed.weight

    # print out node 2's input feature
    print(G.ndata['feat'][2])
    # print out node 10 and 11's input features
    print(G.ndata['feat'][[10, 11]])

2.3 定义一个图卷积神经网络

关于GCN的原理可看原作者的博客:https://tkipf.github.io/graph-convolutional-networks/

图卷积层的数学定义: h i ( l + 1 ) = σ ( b ( l ) + ∑ j ∈ N ( i ) 1 c j i h j ( l ) W ( l ) ) h_i^{(l+1)} = \sigma(b^{(l)} + \sum_{j\in\mathcal{N}(i)}\frac{1}{c_{ji}}h_j^{(l)}W^{(l)}) hi(l+1)=σ(b(l)+jN(i)cji1hj(l)W(l))

其中:

  • N ( i ) \mathcal{N}(i) N(i) 是节点 i i i的邻居节点集合;
  • c j i c_{ji} cji 是节点 i i i和节点 j j j的度分别的开根号的乘积,即 c j i = ∣ N ( j ) ∣ ∣ N ( i ) ∣ c_{ji} = \sqrt{|\mathcal{N}(j)|}\sqrt{|\mathcal{N}(i)|} cji=N(j) N(i) );
  • σ \sigma σ 是一个激活函数

如果是有向边带权图,则是加权的图卷积: h i ( l + 1 ) = σ ( b ( l ) + ∑ j ∈ N ( i ) e j i c j i h j ( l ) W ( l ) ) h_i^{(l+1)} = \sigma(b^{(l)} + \sum_{j\in\mathcal{N}(i)}\frac{e_{ji}}{c_{ji}}h_j^{(l)}W^{(l)}) hi(l+1)=σ(b(l)+jN(i)cjiejihj(l)W(l))

其中:

  • e j i e_{ji} eji是节点 j j j到节点 i i i的边权值;
  • 初始时可以设 c j i c_{ji} cjinorm='none' ,然后在前向传播forward计算时赋值为 e j i e_{ji} eji
  • ~dgl.nn.pytorch.EdgeWeightNorm对标量边权值进行归一化。

一般来说,节点通过message函数传递消息,然后通过reduce函数进行数据聚合(下面栗子的聚合是通过sum)。

(1)第一层将大小为34的输入特征转换为隐藏的大小为5。
(2)第二层将隐藏层转换为大小为2的输出特征,对应Karate club中的两个组。

from dgl.nn.pytorch import GraphConv
class GCN(nn.Module):
    def __init__(self, in_feats, hidden_size, num_classes):
        super(GCN, self).__init__()
        self.conv1 = GraphConv(in_feats, hidden_size)
        self.conv2 = GraphConv(hidden_size, num_classes)

    def forward(self, g, inputs):
        h = self.conv1(g, inputs)
        h = torch.relu(h)
        h = self.conv2(g, h)
        return h

对应的网络结构很简单:

GCN(
  (gcn1): GCNLayer(
    (linear): Linear(in_features=34, out_features=5, bias=True)
  )
  (gcn2): GCNLayer(
    (linear): Linear(in_features=5, out_features=2, bias=True)
  )
)

2.4 输出准备和初始化

# 数据准备和初始化
inputs = G.ndata['feat']
labeled_nodes = torch.tensor([0, 33])
labels = torch.tensor([0, 1])

2.5 训练和可视化

def train(G, inputs, embed, labeled_nodes,labels):
    net = GCN(5,5,2)
    import itertools

    optimizer = torch.optim.Adam(itertools.chain(net.parameters(), embed.parameters()), lr=0.01)
    all_logits = []
    for epoch in range(30):
        logits = net(G, inputs)
        # we save the logits for visualization later
        # detach代表从当前计算图中分离下来的
        all_logits.append(logits.detach()) 
        logp = F.log_softmax(logits, 1)
        # 半监督学习, 只使用标记的节点计算loss
        loss = F.nll_loss(logp[labeled_nodes], labels)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        print('Epoch %d | Loss: %.4f' % (epoch, loss.item()))

    print(all_logits)

为了可视化,并且在train函数中加入draw函数,这里还用到了生成动态图的animation.FuncAnimation函数。

相反,由于模型为每个节点生成大小为2的输出特征,因此我们可以通过在2D空间中绘制输出特征来可视化。 下面的代码使训练过程从最初的猜测(根本没有正确分类节点)到最终的结果(线性可分离节点)动画化。

    def draw(i):
        cls1color = '#00FFFF'
        cls2color = '#FF00FF'
        pos = {}
        colors = []
        for v in range(34):
            pos[v] = all_logits[i][v].numpy()
            cls = pos[v].argmax()
            colors.append(cls1color if cls else cls2color)
        ax.cla()
        ax.axis('off')
        ax.set_title('Epoch: %d' % i)
        nx.draw_networkx(nx_G.to_undirected(), pos, node_color=colors,
                         with_labels=True, node_size=300, ax=ax)
        
    nx_G = G.to_networkx().to_undirected()
    fig = plt.figure(dpi=150)
    fig.clf()
    ax = fig.subplots()
    for i in range(30):
        draw(i)
        plt.pause(0.2)
    ani = animation.FuncAnimation(fig, draw, frames=len(all_logits), interval=200)
    ani.save('change1.gif', writer='imagemagick', fps=10)
    plt.show()

在这里插入图片描述
以上动画显示了经过一系列训练后,模型如何正确预测社区。

Reference

(1)使用python中的FuncAnimation画Gif图#1
(2)https://blog.csdn.net/Together_CZ/article/details/106504531
(3)https://www.pianshen.com/article/7142171595/
(4)dgl官方文档:https://docs.dgl.ai/tutorials/blitz/1_introduction.html#sphx-glr-tutorials-blitz-1-introduction-py
(5)阿里苘郁蓁知乎:https://zhuanlan.zhihu.com/p/93828551?hmsr=toutiao.io(不过注意要版本旧了,需要改,见头条评论,fn在最新内置包有)
(6)现在图神经网络框架里,DGL和PyG哪个好用
(7)https://ogb.stanford.edu/docs/home/#dataloader

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山顶夕景

小哥哥给我买个零食可好

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值