一、LLM中的温度系数
- temperature参数控制生成语言模型中生成文本的随机性和创造性,调整模型的softmax输出层中预测词的概率;
- 其值越大,则预测词的概率的方差减小,即很多词被选择的可能性增大,利于文本多样化
- 举例:Prompt: “The quick brown fox”
- Temperature = 0.1:
“The quick brown fox jumped over the lazy dog. The quick brown fox jumped over the lazy dog. The quick brown fox jumped over the lazy dog. - Temperature = 0.5:
“The quick brown fox jumped over the lazy dog. The lazy cat was not impressed. The quick brown fox ran away.” - Temperature = 1.0:
“The quick brown fox jumped over the lazy dog. Suddenly, a flock of birds flew overhead, causing the fox to stop in its tracks. It looked up at the sky, wondering where they were going.”
- Temperature = 0.1:
softmax计算的概率分布:
p
(
x
i
)
=
e
x
i
∑
j
=
1
V
e
x
j
p\left(x_i\right)=\frac{e^{x_i}}{\sum_{j=1}^V e^{x_j}}
p(xi)=∑j=1Vexjexi
加入温度系数到softmax时:
p
(
x
i
)
=
e
x
i
T
∑
j
=
1
V
e
x
j
T
=
1
∑
j
=
1
V
e
x
j
−
x
i
T
p\left(x_i\right)=\dfrac{e^{\dfrac{x_i}{T}}}{\sum_{j=1}^V e^{\dfrac{x_j}{T}}} \\ =\frac{1}{\sum_{j=1}^V e^{\frac{x_{j}-x_i}{T}}}
p(xi)=∑j=1VeTxjeTxi=∑j=1VeTxj−xi1
简单分析:temperature从0到1的数值,当数值越大,将上式的分子分母同时除以分子,就可以发现temperture越大则总体值越大。
二、代码举例
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
criterion = nn.CrossEntropyLoss()
x = torch.Tensor([[1, 2, 3 ,4]])
y = torch.LongTensor([3])
# 折线图横坐标
x_ = [i for i in range(len(x.squeeze(0)))]
t = [1, 0.5, 0.1]
col = ['red', 'blue', 'green']
for i in range(len(t)):
temp = t[i]
out = F.softmax(x / temp, dim=1)
loss = criterion(out, y)
y_ = out.squeeze(0).tolist()
plt.plot(x_, y_, color=col[i], linestyle='dashed', linewidth=2, \
marker='o', markerfacecolor='red', markersize=8, label = "temp:" + str(temp))
print("softmax概率值:", out, "\nloss:", loss, "\n")
# 图例放在右上角
plt.legend(loc = "upper left")
plt.title("diffterent temperature")
plt.xlabel("xlabel")
plt.ylabel("logits")
plt.show()
随着T的减少,softmax输出各类别的概率方差越大,而T越大则越相对平滑,印证了刚才的分析。
Reference
[1] 谈谈softmax中常出现的温度系数 T (τ)
[2] LLM Parameters Demystified: Getting The Best Outputs from Language AI