为什么网络越深越难训练

梯度消失和梯度爆炸使得网络越深越难训练

我们都知道神经网络的计算过程依靠的是前向传播和误差反向传播。误差反向传播用于更新网络参数,但是由于误差反向传播主要依靠于链式求导法则,即就是某一层的参数调整是依赖于它后边所有层与误差的偏导数的,这就使得不同层的参数的训练速度不同。靠近输入层的网络层容易发生梯度消失/爆炸,可以简单理解为当各层的偏导数比较小时,反传至输入层时候梯度就会特别小(消失),反之就会特别大(爆炸),梯度非常大或者非常小就会使得网络参数更新速度过大/过小。

为加深原理上的理解,小伙伴们可以自己手动推一遍神经网络正向计算与误差反传过程。

一般来说,随着网络的深度增加,深层网络训练可能变得更加困难。以下是一些原因: 1. 梯度消失/梯度爆炸:在深度网络中,信息需要通过多个层进行传递,这可能导致梯度在反向传播过程中逐渐变小或变大,从而导致梯度消失或梯度爆炸的问题。这使得网络参数的更新非常困难,导致训练过程变慢或者无法收敛。 2. 参数空间的复杂性:深层网络具有更多的参数,这意味着网络需要更多的训练样本来学习这些参数。如果训练数据有限,那么深层网络可能出现过拟合现象。 3. 计算资源需求:深层网络通常需要更多的计算资源(例如内存和计算能力),以便在训练过程中有效地处理大量的参数和数据。这可能对硬件和时间成本构成挑战。 然而,尽管深层网络可能更难训练,但仍然有很多技术和方法可以应对这些问题。例如: - 初始化策略:使用适当的权重初始化方法,如Xavier或He等,可以帮助缓解梯度消失或梯度爆炸的问题。 - 规范化方法:使用批归一化、权重衰减(weight decay)等规范化方法,可以帮助稳定训练过程,防止过拟合。 - 残差连接:引入残差连接(如ResNet)可以帮助信息在网络中更容易地传递,缓解梯度消失和训练困难的问题。 - 预训练和迁移学习:通过在大规模数据集上进行预训练,或者利用先前训练好的模型进行迁移学习,可以提供更好的初始化和更快的收敛速度。 - 正则化和早停策略:使用正则化方法(如dropout)和合适的早停策略,可以帮助控制模型的复杂性,防止过拟合。 总之,尽管深层网络可能更具挑战性,但通过合适的技术和策略,仍然可以有效地训练深度网络并获得良好的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值