相关概念
级数收敛发散 ≠ 序列收敛发散
敛散性判断
(1)定义法
前
n
项
和
S
n
的
极
限
存
在
,
则
级
数
收
敛
。
前n项和S_n的极限存在,则级数收敛。
前n项和Sn的极限存在,则级数收敛。
(2)定理法
∑
n
=
1
∞
x
n
和
∑
n
=
1
∞
y
n
都
收
敛
,
则
级
数
收
敛
。
\sum_{n=1}^{\infty}x_n和\sum_{n=1}^{\infty}y_n都收敛,则级数收敛。
n=1∑∞xn和n=1∑∞yn都收敛,则级数收敛。
性质
(1)
如
果
∑
n
=
1
∞
∣
z
n
∣
收
敛
,
则
∑
n
=
1
∞
z
n
也
收
敛
。
如果\sum_{n=1}^{\infty}|z_n|收敛,则\sum_{n=1}^{\infty}z_n也收敛。
如果n=1∑∞∣zn∣收敛,则n=1∑∞zn也收敛。
(2)
收
敛
级
数
的
lim
n
→
∞
z
n
=
0
。
收敛级数的\lim_{n \to \infty} z_n = 0。
收敛级数的n→∞limzn=0。
(3)
收
敛
级
数
的
∑
n
=
1
∞
x
n
和
∑
n
=
1
∞
y
n
都
收
敛
。
收敛级数的\sum_{n=1}^{\infty}x_n和\sum_{n=1}^{\infty}y_n都收敛。
收敛级数的n=1∑∞xn和n=1∑∞yn都收敛。