经验分布函数的期望值公式解析

E [ F ^ n ( x ) ] = E [ 1 n ∑ i = 1 n 1 { X i ≤ x } ] = 1 n n F X ( x ) = F X ( x ) E[\hat{F}_n(x)] = E\left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{X_i \leq x\}\right] = \frac{1}{n} n F_X(x) = F_X(x) E[F^n(x)]=E[n1i=1n1{Xix}]=n1nFX(x)=FX(x)

这个公式描述了经验分布函数(Empirical Distribution Function,简称EDF)的期望值。我们来逐步解析这个公式,以便更好地理解它:

  1. 定义经验分布函数 F ^ n ( x ) \hat{F}_n(x) F^n(x) 是经验分布函数,定义为样本中不超过 x x x 的观测值的比例。具体的公式是
    F ^ n ( x ) = 1 n ∑ i = 1 n 1 { X i ≤ x } \hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{X_i \leq x\} F^n(x)=n1i=1n1{Xix}

其中, 1 { X i ≤ x } \mathbf{1}\{X_i \leq x\} 1{Xix} 是一个指示函数,当 X i ≤ x X_i \leq x Xix 时取值为 1,否则为 0。

  1. 计算期望:要求 F ^ n ( x ) \hat{F}_n(x) F^n(x) 的期望,即 E [ F ^ n ( x ) ] E[\hat{F}_n(x)] E[F^n(x)] ,可以使用线性期望的性质,即期望的和等于和的期望。因此,
    E [ F ^ n ( x ) ] = E [ 1 n ∑ i = 1 n 1 { X i ≤ x } ] E[\hat{F}_n(x)] = E\left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{X_i \leq x\}\right] E[F^n(x)]=E[n1i=1n1{Xix}]

由于 1 n \frac{1}{n} n1 是常数,可以提出到期望的外面:

E [ F ^ n ( x ) ] = 1 n ∑ i = 1 n E [ 1 { X i ≤ x } ] E[\hat{F}_n(x)] = \frac{1}{n} \sum_{i=1}^{n} E[\mathbf{1}\{X_i \leq x\}] E[F^n(x)]=n1i=1nE[1{Xix}]

  1. 计算指示函数的期望

指示函数 1 { X i ≤ x } \mathbf{1}\{X_i \leq x\} 1{Xix} 的值取决于事件 { X i ≤ x } \{X_i \leq x\} {Xix} 是否发生。具体来说:

如果 X i ≤ x X_i \leq x Xix 成立,那么 1 { X i ≤ x } = 1 \mathbf{1}\{X_i \leq x\} = 1 1{Xix}=1

如果 X i > x X_i > x Xi>x ,那么 1 { X i ≤ x } = 0 \mathbf{1}\{X_i \leq x\} = 0 1{Xix}=0

指示函数的期望值( E [ 1 { X i ≤ x } ] E[\mathbf{1}\{X_i \leq x\}] E[1{Xix}] )就是这个函数值的加权平均,而权重则是各自结果发生的概率。所以,计算指示函数的期望可以表示为:

E [ 1 { X i ≤ x } ] = 1 ⋅ P ( X i ≤ x ) + 0 ⋅ P ( X i > x ) E[\mathbf{1}\{X_i \leq x\}] = 1 \cdot P(X_i \leq x) + 0 \cdot P(X_i > x) E[1{Xix}]=1P(Xix)+0P(Xi>x)

这里 P ( X i ≤ x ) P(X_i \leq x) P(Xix) X i X_i Xi 的值小于或等于 x x x 的概率,而 P ( X i > x ) P(X_i > x) P(Xi>x) X i X_i Xi 的值大于 x x x 的概率。由于 0 ⋅ P ( X i > x ) 0 \cdot P(X_i > x) 0P(Xi>x) 为 0,所以上面的公式简化为:

E [ 1 { X i ≤ x } ] = P ( X i ≤ x ) E[\mathbf{1}\{X_i \leq x\}] = P(X_i \leq x) E[1{Xix}]=P(Xix)

由于每个 X i X_i Xi 是独立同分布的, E [ 1 { X i ≤ x } ] E[\mathbf{1}\{X_i \leq x\}] E[1{Xix}] 实际上就是 X i X_i Xi 小于等于 x x x 的概率,即分布函数 F X ( x ) F_X(x) FX(x) 。因此,
E [ 1 { X i ≤ x } ] = F X ( x ) E[\mathbf{1}\{X_i \leq x\}] = F_X(x) E[1{Xix}]=FX(x)

  1. 将期望值代入求和:由于每个 i i i 都是相同的概率,我们有
    E [ F ^ n ( x ) ] = 1 n ∑ i = 1 n F X ( x ) = 1 n n F X ( x ) = F X ( x ) E[\hat{F}_n(x)] = \frac{1}{n} \sum_{i=1}^{n} F_X(x) = \frac{1}{n} n F_X(x) = F_X(x) E[F^n(x)]=n1i=1nFX(x)=n1nFX(x)=FX(x)

因此,这个公式表明,经验分布函数的期望等于理论分布函数 F X ( x ) F_X(x) FX(x) 。这说明了经验分布函数是理论分布函数的一个无偏估计。

我们再通过一个具体的例子来说明:

假设 X i X_i Xi 是一个简单的离散随机变量,它以 1 2 \frac{1}{2} 21 的概率取值 0,以 1 2 \frac{1}{2} 21 的概率取值 1。

现在我们要计算 E [ 1 { X i ≤ 0.5 } ] E[\mathbf{1}\{X_i \leq 0.5\}] E[1{Xi0.5}]
根据 X i X_i Xi 的取值情况:

X i = 0 X_i = 0 Xi=0 (发生概率为 1 2 \frac{1}{2} 21 ), 1 { X i ≤ 0.5 } = 1 \mathbf{1}\{X_i \leq 0.5\} = 1 1{Xi0.5}=1

X i = 1 X_i = 1 Xi=1 (发生概率为 1 2 \frac{1}{2} 21 ), 1 { X i ≤ 0.5 } = 0 \mathbf{1}\{X_i \leq 0.5\} = 0 1{Xi0.5}=0
因此,

E [ 1 { X i ≤ 0.5 } ] = 1 ⋅ 1 2 + 0 ⋅ 1 2 = 1 2 E[\mathbf{1}\{X_i \leq 0.5\}] = 1 \cdot \frac{1}{2} + 0 \cdot \frac{1}{2} = \frac{1}{2} E[1{Xi0.5}]=121+021=21

这也恰好是 P ( X i ≤ 0.5 ) P(X_i \leq 0.5) P(Xi0.5) ,即 X i X_i Xi 小于等于 0.5 的概率。这样的计算展示了指示函数的期望确实等于该事件的概率,即 F X ( x ) F_X(x) FX(x)

  • 23
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值