Infinite Fraction Path UVALive - 8207

Infinite Fraction Path UVALive - 8207

题意:

给你n个数,每个数在0到9之间,每个数的下标一次是0~n-1,然后他所能走到的数为(i^2+1)%n,i为他本身的下标,然后让你求走n步,每一步的数相连,形成的最大的数是多少?

题解:

我想的是用一个队列维护,因为要求数最大,那第一位我们就取最大值,如果有多个一样的最大值,都取。然后一次取出队列中的最大值,然后枚举他们的下一位(即指向的数),然后他所指数的最大值,有多个的话都存到队列,一次进行,进行n轮结束

代码:

#include<bits/stdc++.h>
#define mk make_pair
using namespace std;
typedef long long ll;
//bool SUBMIT = 1;
const int maxn = 150009;
char s[maxn],ans[maxn];
int n;
int main()
{
	int t;
	scanf("%d",&t);
	queue<int>q[2];
	for(int i=1;i<=t;i++){
		
		scanf("%d%s",&n,s);
		int g=0,m=0;
		for(int i=0;i<n;i++){
			m=max(m,s[i]-'0');
		}
		for(int i=0;i<n;i++){
			if(s[i]-'0'==m)
				q[g&1].push(i);
		}
		ans[0]=m+'0';
		while(g<n){
			queue<int>t;
			m=0;
			while(!q[g&1].empty()){
				int k=q[g&1].front();
				q[g&1].pop();
				t.push(k);
				int next=(1ll+1ll*k*k)%n;
				m=max(m,s[next]-'0');
			}	
			g++;
			while(!t.empty()){
				int k=t.front();
				t.pop();
				int next=(1ll+1ll*k*k)%n;
				if(m==s[next]-'0'){
					q[g&1].push(next);
				}
			}
			ans[g]=m+'0';
		}
		ans[n]='\0';
		printf("Case #%d: %s\n",i,ans);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值