Infinite Fraction Path UVALive - 8207
题意:
给你n个数,每个数在0到9之间,每个数的下标一次是0~n-1,然后他所能走到的数为(i^2+1)%n,i为他本身的下标,然后让你求走n步,每一步的数相连,形成的最大的数是多少?
题解:
我想的是用一个队列维护,因为要求数最大,那第一位我们就取最大值,如果有多个一样的最大值,都取。然后一次取出队列中的最大值,然后枚举他们的下一位(即指向的数),然后他所指数的最大值,有多个的话都存到队列,一次进行,进行n轮结束
代码:
#include<bits/stdc++.h>
#define mk make_pair
using namespace std;
typedef long long ll;
//bool SUBMIT = 1;
const int maxn = 150009;
char s[maxn],ans[maxn];
int n;
int main()
{
int t;
scanf("%d",&t);
queue<int>q[2];
for(int i=1;i<=t;i++){
scanf("%d%s",&n,s);
int g=0,m=0;
for(int i=0;i<n;i++){
m=max(m,s[i]-'0');
}
for(int i=0;i<n;i++){
if(s[i]-'0'==m)
q[g&1].push(i);
}
ans[0]=m+'0';
while(g<n){
queue<int>t;
m=0;
while(!q[g&1].empty()){
int k=q[g&1].front();
q[g&1].pop();
t.push(k);
int next=(1ll+1ll*k*k)%n;
m=max(m,s[next]-'0');
}
g++;
while(!t.empty()){
int k=t.front();
t.pop();
int next=(1ll+1ll*k*k)%n;
if(m==s[next]-'0'){
q[g&1].push(next);
}
}
ans[g]=m+'0';
}
ans[n]='\0';
printf("Case #%d: %s\n",i,ans);
}
return 0;
}