self-attention

本文解析了自注意力机制中,Q、K、V矩阵的维度n和k如何影响计算效率,重点讲解了计算复杂度背后的数学原理和实际应用中的关键点。

attention(Q,K,V)=softmax(\frac{QK^T}{\sqrt{d_k}})*V

其中,Q、K、V的维度都是nxk,n为句子中的单词数,k为每个单词的embedding维度,故self-attention的计算复杂度为O(n^2k)

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值