深度学习模型压缩(量化、剪枝、轻量化结构、batch-normalization融合)

本文介绍了一个深度学习模型压缩项目,包括量化(8/4/2 bits, 三值/二值量化)、剪枝策略(正常、规整、分组卷积通道剪枝)和轻量化结构。项目提供了多种量化和剪枝的组合,并探讨了Batch Normalization的融合方法,旨在提升模型在硬件平台上的效率和部署可行性。" 85404927,5621135,Angular Zorro表格使用与效果实战,"['前端开发', 'Angular', 'Zorro', '前端框架', '数据展示']
摘要由CSDN通过智能技术生成

“目前在深度学习领域分类两个派别,一派为学院派,研究强大、复杂的模型网络和实验方法,为了追求更高的性能;另一派为工程派,旨在将算法更稳定、高效的落地在硬件平台上,效率是其追求的目标。复杂的模型固然具有更好的性能,但是高额的存储空间、计算资源消耗是使其难以有效的应用在各硬件平台上的重要原因。所以,卷积神经网络日益增长的深度和尺寸为深度学习在移动端的部署带来了巨大的挑战,深度学习模型压缩与加速成为了学术界和工业界都重点关注的研究领域之一”


项目简介:

       基于pytorch实现模型压缩(1、量化:8/4/2 bits(dorefa)、三值/二值(twn/bnn/xnor-net);2、剪枝:正常、规整、针对分组卷积结构的通道剪枝;3、分组卷积结构;4、针对特征A二值的BN融合)

目前提供:

  • 1、普通卷积和分组卷积结构
  • 2、权重W和特征A的训练中量化,W(32/8/4/2bits,三/二值) 和A(32/8/4/2bits,三/二值)任意组合
  • 3、针对三/二值的一些tricks:W二值/三值缩放因子,W/grad(ste、saturate_ste、soft_ste)截断,W三值_gap(防止参数更新抖动),W/A二值时BN_momentum(<0.9),A二值时采用B-A-C-P可比C-B-A-P获得更高acc
  • 4、多种剪枝方式:正常剪枝、规整剪枝(比如可剪枝为剩余filter个数为16的倍数)、针对分组卷积结构的剪枝(剪枝后仍保证分组卷积结构&
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值