深度学习入门概念

三个大概念

深度学习是机器学习领域中神经网络分支的发展。
在这里插入图片描述

机器学习

观察现象,发现规律,假设模型,设计评价指标(损失loss),通过评价指标找到模型最优解的过程叫做优化。
在这里插入图片描述
在这里插入图片描述

深度学习

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
传统机器学习:人工特征提取(靠人的经验)
简单模型:机器学习模型,没有对数据进一步提取深度特征的能力
在这里插入图片描述

深度学习最基本概念–神经网络

在这里插入图片描述
深度学习不仅实现了模型的端到端学习,还推动了人工智能进入工业大生产阶段,产生了标准化、自动化和模块化的通用框架。不同场景的深度学习模型具备一定的通用性,五个步骤即可完成模型的构建和训练,如下图所示。
在这里插入图片描述
正是由于深度学习的建模和训练的过程存在通用性,在构建不同的模型时,只有模型三要素(假设、评价、优化)不同,其它步骤基本一致,深度学习框架才有用武之地。

深度学习框架

近年来深度学习在很多机器学习领域都有着非常出色的表现,在图像识别、语音识别、自然语言处理、机器人、网络广告投放、医学自动诊断和金融等领域有着广泛应用。面对繁多的应用场景,深度学习框架有助于建模者节省大量而繁琐的外围工作,更聚焦业务场景和模型设计本身。

深度学习框架优势:
1.节省编写大量底层代码的精力:屏蔽底层实现,用户只需关注模型的逻辑结构。同时,深度学习工具简化了计算,降低了深度学习入门门槛。
2.省去了部署和适配环境的烦恼:具备灵活的移植性,可将代码部署到CPU/GPU/移动端上,选择具有分布式性能的深度学习工具会使模型训练更高效。

深度学习框架设计思路
深度学习框架的本质是框架自动实现建模过程中相对通用的模块,建模者只需实现模型个性化的部分,这样可以在“节省投入”和“产出强大”之间达到一个平衡。
个性化部分:往往是指定模型由哪些逻辑元素组合,由建模者完成。
通用部分:聚焦这些元素的算法实现,由深度学习框架完成。

深度学习框架设计示意图:
在这里插入图片描述
无论是计算机视觉任务还是自然语言处理任务,使用的深度学习模型结构都是类似的,只是在每个环节指定的实现算法不同。因此,多数情况下,算法实现只是相对有限的一些选择,如常见的Loss函数不超过十种、常用的网络配置也就十几种、常用优化算法不超过五种等等。这些特性使得基于框架建模更像一个编写“模型配置”的过程。

深度学习建模流程(横纵式)
在这里插入图片描述
纵向概要介绍模型的基本代码结构和极简实现方案。横向深入探讨构建模型的每个环节中,更优但相对复杂的实现方案。例如在模型设计环节,除了在极简版本使用的单层神经网络(与房价预测模型一样)外,还可以尝试更复杂的网络结构,如多层神经网络、加入非线性的激活函数,甚至专门针对视觉任务优化的卷积神经网络。
在这里插入图片描述
深度学习分类任务:
分类任务用什么损失函数?
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
深度学习优化算法:
在这里插入图片描述
学习率是优化器的一个参数,调整学习率看似是一件非常麻烦的事情,需要不断的调整步长,观察训练时间和Loss的变化。经过研究员的不断的实验,当前已经形成了四种比较成熟的优化算法:SGD、Momentum、AdaGrad和Adam,效果如图所示。
在这里插入图片描述

  1. SGD: 随机梯度下降算法,每次训练少量数据,抽样偏差导致的参数收敛过程中震荡。

  2. Momentum: 引入物理“动量”的概念,累积速度,减少震荡,使参数更新的方向更稳定。

每个批次的数据含有抽样误差,导致梯度更新的方向波动较大。如果我们引入物理动量的概念,给梯度下降的过程加入一定的“惯性”累积,就可以减少更新路径上的震荡,即每次更新的梯度由“历史多次梯度的累积方向”和“当次梯度”加权相加得到。历史多次梯度的累积方向往往是从全局视角更正确的方向,这与“惯性”的物理概念很像,也是为何其起名为“Momentum”的原因。类似不同品牌和材质的篮球有一定的重量差别,街头篮球队中的投手(擅长中远距离投篮)喜欢稍重篮球的比例较高。一个很重要的原因是,重的篮球惯性大,更不容易受到手势的小幅变形或风吹的影响。

  1. AdaGrad: 根据不同参数距离最优解的远近,动态调整学习率。学习率逐渐下降,依据各参数变化大小调整学习率。

通过调整学习率的实验可以发现:当某个参数的现值距离最优解较远时(表现为梯度的绝对值较大),我们期望参数更新的步长大一些,以便更快收敛到最优解。当某个参数的现值距离最优解较近时(表现为梯度的绝对值较小),我们期望参数的更新步长小一些,以便更精细的逼近最优解。类似于打高尔夫球,专业运动员第一杆开球时,通常会大力打一个远球,让球尽量落在洞口附近。当第二杆面对离洞口较近的球时,他会更轻柔而细致的推杆,避免将球打飞。与此类似,参数更新的步长应该随着优化过程逐渐减少,减少的程度与当前梯度的大小有关。根据这个思想编写的优化算法称为“AdaGrad”,Ada是Adaptive的缩写,表示“适应环境而变化”的意思。RMSProp是在AdaGrad基础上的改进,学习率随着梯度变化而适应,解决AdaGrad学习率急剧下降的问题。

  1. Adam: 由于动量和自适应学习率两个优化思路是正交的,因此可以将两个思路结合起来,这就是当前广泛应用的算法。
    说明:

每种优化算法均有更多的参数设置,详情可查阅飞桨的官方API文档。理论最合理的未必在具体案例中最有效,所以模型调参是很有必要的,最优的模型配置往往是在一定“理论”和“经验”的指导下实验出来的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值