Python 实现 RSI 指标计算:股票技术分析的利器系列(4)


介绍

RSI(相对强弱指标,Relative Strength Index)是一种用于衡量市场超买和超卖情况的技术分析指标。

先看看官方介绍:

RSI (相对强弱指标)
用法
1.RSI>80 为超买,RSI<20 为超卖;
2.RSI 以50为中界线,大于50视为多头行情,小于50视为空头行情;
3.RSI 在80以上形成M头或头肩顶形态时,视为向下反转信号;
4.RSI 在20以下形成W底或头肩底形态时,视为向上反转信号;
5.RSI 向上突破其高点连线时,买进;RSI 向下跌破其低点连线时,卖出。

算法解释

LC:=REF(CLOSE,1);
RSI1:SMA(MAX(CLOSE-LC,0),N1,1)/SMA(ABS(CLOSE-LC),N1,1)*100;
RSI2:SMA(MAX(CLOSE-LC,0),N2,1)/SMA(ABS(CLOSE-LC),N2,1)*100;
RSI3:SMA(MAX(CLOSE-LC,0),N3,1)/SMA(ABS(CLOSE-LC),N3,1)*100;

代码

rolling函数介绍

rolling 函数通常与其他函数(如 meansumstd 等)一起使用,以计算滚动统计量,例如滚动均值、滚动总和等。

以下是 rolling 函数的基本语法:

DataFrame.rolling(window, min_periods=None, center=False, win_type=None, on=None, axis=0, closed=None)
  • window: 用于计算统计量的窗口大小。
  • min_periods: 每个窗口最少需要的非空观测值数量。
  • center: 确定窗口是否居中,默认为 False
  • win_type: 窗口类型,例如 Noneboxcartriang 等,默认为 None
  • on: 在数据帧中执行滚动操作的列,默认为 None,表示对整个数据帧执行操作。
  • axis: 执行滚动操作的轴,默认为 0,表示按列执行操作。
  • closed: 确定窗口的哪一端是闭合的,默认为 None

计算LC

# 计算LC
df['LC'] = df['CLOSE'].shift(1)

shift函数

shift() 是 Pandas 中的一个函数,用于将 DataFrame 或 Series 中的数据沿着指定轴向上或向下移动指定数量的位置。这可以用来创建滞后值或领先值,也就是将数据向前或向后移动一定的步数。

语法:
DataFrame.shift(periods=1, freq=None, axis=0, fill_value=None)
参数:
  • periods:要移动的位置数目,可以是正数(向下移动)或负数(向上移动)。默认值为 1。
  • freq:可选,用于时序数据。在时间序列数据中,可以通过设置 freq 参数来指定时间频率,例如 “D” 表示日历日,“M” 表示月份,等等。
  • axis:指定沿着哪个轴进行移动,0 表示行索引,1 表示列索引。默认值为 0。
  • fill_value:可选,用于填充缺失值的替代值。
返回值:

返回一个移动后的新的 DataFrame 或 Series。

计算涨跌幅

# 计算涨跌幅
df['up_move'] = df['CLOSE'] - df['LC']
df['up'] = df['up_move'].apply(lambda x: max(x, 0))
df['down'] = df['up_move'].apply(lambda x: abs(x))

函数MAX介绍

max() 是 Python 内置函数之一,用于返回给定参数的最大值。

语法:
max(arg1, arg2, *args[, key])
参数:
  • arg1, arg2, …:要比较的对象,可以是数字、字符串、列表、元组等可比较的数据类型。
  • *args(可选):用于传递多个参数,可以是任意数量的参数。
  • key(可选):用于指定比较的函数。
返回值:

返回给定参数的最大值。

示例:
print(max(5, 10, 3, 8))  # 输出:10
print(max([3, 8, 2, 10]))  # 输出:10
print(max("apple", "banana", "orange"))  # 输出:"orange"

在示例中,max() 函数分别返回了传递给它的数字、列表和字符串中的最大值。

abs函数介绍

abs() 是 Python 内置函数之一,用于返回给定参数的绝对值。

语法:
abs(x)
参数:
  • x:要求取绝对值的数字或者可转换为数字的对象。
返回值:

返回参数的绝对值。

示例:
print(abs(-5))  # 输出:5
print(abs(3.14))  # 输出:3.14
print(abs(-10.5))  # 输出:10.5

在示例中,abs() 函数分别返回了 -53.14-10.5 的绝对值。

计算移动平均

# 计算移动平均
df['avg_gain'] = df['up'].rolling(window=N).mean()
df['avg_loss'] = df['down'].rolling(window=N).mean()

计算RSI

# 计算RSI
df['RSI'] = df['avg_gain'] / df['avg_loss'] * 100

计算单个的RSI代码

需要数据可以看附件资源 RSI-单个

import pandas as pd

data = {
    'CLOSE': 填每日收盘的数据,
}

df = pd.DataFrame(data)


# LC:=REF(CLOSE,1);
# RSI1:SMA(MAX(CLOSE-LC,0),N1,1)/SMA(ABS(CLOSE-LC),N1,1)*100;
def RSI(N):
    # 计算LC
    df['LC'] = df['CLOSE'].shift(1)

    # 计算涨跌幅
    df['up_move'] = df['CLOSE'] - df['LC']
    df['up'] = df['up_move'].apply(lambda x: max(x, 0))
    df['down'] = df['up_move'].apply(lambda x: abs(x))

    # 计算移动平均
    df['avg_gain'] = df['up'].rolling(window=N).mean()
    df['avg_loss'] = df['down'].rolling(window=N).mean()

    # 计算RSI
    df['RSI'] = df['avg_gain'] / df['avg_loss'] * 100

    # 清理中间结果
    df.drop(['up_move', 'up', 'down', 'avg_gain', 'avg_loss'], axis=1, inplace=True)
    return df


N1 = 6

print(RSI(N1))


在这里插入图片描述

计算3个RSI ,完整代码

默认情况下,RSI 通常包括 RSI6RSI12RSI24,它们分别代表了不同的 RSI 计算窗口大小,即 6 天、12 天和 24 天。

需要数据可以看附件资源 RSI

import pandas as pd

data = {
    'CLOSE': 填每日收盘的数据,
}

df = pd.DataFrame(data)


# LC:=REF(CLOSE,1);
# RSI1:SMA(MAX(CLOSE-LC,0),N1,1)/SMA(ABS(CLOSE-LC),N1,1)*100;
def RSI(N):
    # 计算LC
    df['LC'] = df['CLOSE'].shift(1)

    # 计算涨跌幅
    df['up_move'] = df['CLOSE'] - df['LC']
    df['up'] = df['up_move'].apply(lambda x: max(x, 0))
    df['down'] = df['up_move'].apply(lambda x: abs(x))

    # 计算移动平均
    df['avg_gain'] = df['up'].rolling(window=N).mean()
    df['avg_loss'] = df['down'].rolling(window=N).mean()

    # 计算RSI
    rsi_name = 'RSI' + str(N)
    df[rsi_name] = df['avg_gain'] / df['avg_loss'] * 100

    # 清理中间结果
    df.drop(['up_move', 'up', 'down', 'avg_gain', 'avg_loss'], axis=1, inplace=True)
    return df


N1 = 6
N2 = 12
N3 = 24

rsi_6 = RSI(N1)
rsi_6_12 = RSI(N2)
rsi_6_12_24 = RSI(N3)
print(rsi_6_12_24)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盗理者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值