Python opencv学习-21 光流法

光流法

# 光流法,标记视频中物体的移动
import numpy as np
import cv2

cap = cv2.VideoCapture(0)

# ShiTomasi 角点检测参数
feature_params = dict(maxCorners=100,
                      qualityLevel=0.3,
                      minDistance=7,
                      blockSize=7)

# lucas kanade光流法参数
lk_params = dict(winSize=(15, 15),
                 maxLevel=2,
                 criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))

# 创建随机颜色
color = np.random.randint(0, 255, (100, 3))

# 获取第一帧,找到角点
ret, old_frame = cap.read()

# 找到原始灰度图
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)

# 获取图像中的角点,返回到p0中
p0 = cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params)

# 创建一个蒙版用来画轨迹,创建一个和old_frame一样大小的蒙版
mask = np.zeros_like(old_frame)

while (1):
    ret, frame = cap.read()
    frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    # 计算光流
    p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)

    # 选取好的跟踪点
    good_new = p1[st == 1]
    good_old = p0[st == 1]

    # 画出轨迹
    for i, (new, old) in enumerate(zip(good_new, good_old)):
        a, b = new.ravel()
        c, d = old.ravel()
        mask = cv2.line(mask, (a, b), (c, d), color[i].tolist(), 2)
        frame = cv2.circle(frame, (a, b), 5, color[i].tolist(), -1)
    img = cv2.add(frame, mask)

    cv2.imshow('frame', img)
    k = cv2.waitKey(30) & 0xff
    if k == 27:
        break

    # 更新上一帧的图像和追踪点
    old_gray = frame_gray.copy()
    p0 = good_new.reshape(-1, 1, 2)

cv2.destroyAllWindows()
cap.release()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值