光流法
# 光流法,标记视频中物体的移动
import numpy as np
import cv2
cap = cv2.VideoCapture(0)
# ShiTomasi 角点检测参数
feature_params = dict(maxCorners=100,
qualityLevel=0.3,
minDistance=7,
blockSize=7)
# lucas kanade光流法参数
lk_params = dict(winSize=(15, 15),
maxLevel=2,
criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# 创建随机颜色
color = np.random.randint(0, 255, (100, 3))
# 获取第一帧,找到角点
ret, old_frame = cap.read()
# 找到原始灰度图
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
# 获取图像中的角点,返回到p0中
p0 = cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params)
# 创建一个蒙版用来画轨迹,创建一个和old_frame一样大小的蒙版
mask = np.zeros_like(old_frame)
while (1):
ret, frame = cap.read()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 计算光流
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
# 选取好的跟踪点
good_new = p1[st == 1]
good_old = p0[st == 1]
# 画出轨迹
for i, (new, old) in enumerate(zip(good_new, good_old)):
a, b = new.ravel()
c, d = old.ravel()
mask = cv2.line(mask, (a, b), (c, d), color[i].tolist(), 2)
frame = cv2.circle(frame, (a, b), 5, color[i].tolist(), -1)
img = cv2.add(frame, mask)
cv2.imshow('frame', img)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
# 更新上一帧的图像和追踪点
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1, 1, 2)
cv2.destroyAllWindows()
cap.release()