论文阅读笔记《A closer look at few-shot classification》

小样本学习&元学习经典论文整理||持续更新

核心思想

  本文并没有提出新的小样本学习算法,而是对目前主流的小样本学习算法做了更加深入的比较和研究,提出了自己的一些观点。首先,作者按照统一的方式复现了Baseline方法(特征提取器+线性分类器),Baseline++方法(特征提取器+距离度量分类器),MN,PN,RN和MAML等元学习算法,这个过程中采用相同的backbone结构,相同的数据集,相同的训练策略。这样就能够在一个更加公平的基础上来比较各个算法之间的优劣。
在这里插入图片描述
  如上图中的结果显示,Baseline++方法的性能被严重的低估了,在统一的条件下,其性能是足以和许多元学习算法相媲美的,甚至在CUB-200这种类别内部差异较小的数据集上,其表现是优于元学习中的SOTA算法的。从实验中作者也发现,如果采用浅层的网络结构(如4-Conv),降低数据集类别内部的差异(intra-class variation)会能够有效提高分类算法的性能。然后,作者又研究了不同的Backbone对于算法性能的影响,作者分别尝试了4-Conv,6-Conv, ResNet-10, ResNet-18, ResNet-34等结构,结果如下图所示。
在这里插入图片描述

  作者发现在CUB-200数据集上,随着网络深度的增加,不同算法之间的差异变得更小了。而在mini-ImageNet数据集上,在5-shot情况下,不同算法之间的差异甚至变得更大了。作者认为造成这种状况的原因,是基础类别(用于训练)和新类别(用于测试)之间的领域差别(domain difference)的问题,CUB数据集中只有鸟类的图像,而miniImageNet包含跨度极大的多种类别的物体。作者进而又探讨了领域差异对于小样本学习算法性能的影响,结果如下图所示。
在这里插入图片描述
  作者认为随着领域差异的增大,基于少量新类别样本的自适应能力变得更加重要。在这一方面,Baseline方法通过在新的数据集上直接训练一个新的线性分类器,能够更好地适应新样本,所以表现地更好。

算法评价

  本文其实更像是一篇作者在研究,复现和实验现有算法过程中,总结出的一份实验报告,对于影响小样本分类的多个因素进行了更加深入和细致的研究,也提出了一些具有指导意义的观点。但我觉得本文最大问题在于,实验的基数太小了,所有的结论都只是来自于CUB和miniImageNet两个数据集上的结果,而且缺少理论上的阐述与推导,更多的是得到实验结果后,反向的来解释可能导致这一结果的原因是什么,这样就使得论文中的结论缺少一般性和可信度。

如果大家对于深度学习与计算机视觉领域感兴趣,希望获得更多的知识分享与最新的论文解读,欢迎关注我的个人公众号“深视”。在这里插入图片描述

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深视

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值