小样本学习&元学习经典论文整理

  本文整理了近些年来有关小样本学习的经典文章,并附上了原文下载链接以及论文解读链接。关注公众号“深视”,回复“小样本学习”,可以打包下载全部文章。该文我会持续更新,不断增添新的文章和相关解读,大家可以收藏关注一下。

一、基于度量学习的小样本学习算法

1.《Siamese Neural Networks for One-shot Image Recognition》
  网络名称:Siamese Network
  文章来源:ICML2015
  原文下载:http://www.cs.toronto.edu/~gkoch/files/msc-thesis.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/105967091
  源码地址:尚未开源
2.《Matching Networks for One Shot Learning》
  网络名称:Matching Network
  文章来源:NIPS2016
  原文下载:https://arxiv.org/pdf/1606.04080.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/105908003
  源码地址:尚未开源
3.《Prototypical Networks for Few-shot Learning》
  网络名称:Prototypical Network
  文章来源:NIPS2017
  原文下载:https://arxiv.org/pdf/1703.05175.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/105894839
  源码地址:https://github.com/jakesnell/prototypical-networks
4.《Learning to Compare: Relation Network for Few-Shot Learning》
  网络名称:Relation Network
  文章来源:CVPR2018
  原文下载:https://arxiv.org/pdf/1711.06025.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106158012
  源码地址:https://github.com/lzrobots/DeepEmbeddingModel_ZSL
5.《Finding Task-Relevant Features for Few-Shot Learning by Category Traversal》
  网络名称:CTM
  文章来源:CVPR2019
  原文下载:https://arxiv.org/pdf/1905.11116.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106363521
  源码地址:https://github.com/Clarifai/few-shot-ctm
6.《Variational Prototyping-Encoder: One-Shot Learning with Prototypical Images》
  网络名称:VPE
  文章来源:CVPR2019
  原文下载:https://arxiv.org/pdf/1904.08482.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106438467
  源码地址:https://github.com/mibastro/VPE
7.《RepMet: Representative-based metric learning for classification and few-shot object detection》
  网络名称:RepMet
  文章来源:CVPR2019
  原文下载:https://arxiv.org/pdf/1806.04728.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106472082
  源码地址:尚未开源
8.《Revisiting Local Descriptor based Image-to-Class Measure for Few-shot Learning》
  网络名称:DN4
  文章来源:CVPR2019
  原文下载:https://arxiv.org/pdf/1903.12290v1.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106479996
  源码地址:https://github.com/WenbinLee/DN4
9.《Few-Shot Learning with Localization in Realistic Settings》
  网络名称:
  文章来源:CVPR2019
  原文下载:https://arxiv.org/pdf/1904.08502v1.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106495421
  源码地址:https://github.com/daviswer/fewshotlocal
10.《Dense Classification and Implanting for Few-Shot Learning》
  网络名称:
  文章来源:CVPR2019
  原文下载:https://arxiv.org/pdf/1903.05050.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106545685
  源码地址:尚未开源
11.《TADAM: Task dependent adaptive metric for improved few-shot learning》
  网络名称:TADAM
  文章来源:NIPS2018
  原文下载:https://arxiv.org/pdf/1805.10123.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106641276
  源码地址:https://github.com/ElementAI/TADAM
12.《Power Normalizing Second-order Similarity Network for Few-shot Learning》
  网络名称:SoSN
  文章来源:WACV2019
  原文下载:https://arxiv.org/abs/1811.04167v1.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106688690
  源码地址:尚未开源
13.《Few-Shot Learning with Metric-Agnostic Conditional Embeddings》
  网络名称:MACO
  文章来源:CVPR2018
  原文下载:https://arxiv.org/pdf/1802.04376v1.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106722822
  源码地址:尚未开源
14.《Improved Few-Shot Visual Classification》
  网络名称:Simple CNAPS
  文章来源:CVPR2020
  原文下载:https://arxiv.org/pdf/1912.03432.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106909418
  源码地址:https://github.com/peymanbateni/simple-cnaps
15.《DeepEMD: Few-Shot Image Classification with Differentiable Earth Mover’s Distance and Structured Classifier》
  网络名称:DeepEMD
  文章来源:CVPR2020
  原文下载:https://arxiv.org/abs/2003.06777v1.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106942299
  源码地址:尚未开源
16.《Boosting Few-Shot Learning with Adaptive Margin Loss》
  网络名称:CRAML和TRAML
  文章来源:CVPR2020
  原文下载:https://arxiv.org/pdf/2005.13826.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106979488
  源码地址:尚未开源
17.《Adaptive Subspaces for Few-Shot Learning》
  网络名称:DSN
  文章来源:CVPR2020
  原文下载:http://openaccess.thecvf.com/content_CVPR_2020/papers/Simon_Adaptive_Subspaces_for_Few-Shot_Learning_CVPR_2020_paper.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106984460
  源码地址:https://github.com/chrysts/dsn_fewshot
18.《Learning Embedding Adaptation for Few-Shot Learning》
  网络名称:FEAT
  文章来源:
  原文下载:https://arxiv.org/pdf/1812.03664v2.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/107579565
  源码地址:https://github.com/Sha-Lab/FEAT
19.《TapNet: Neural Network Augmented with Task-Adaptive Projection for Few-Shot Learning》
  网络名称:TapNet
  文章来源:ICML2019
  原文下载:https://arxiv.org/pdf/1905.06549v1.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/107620090
  源码地址:尚未开源
20.《Few-Shot Learning with Embedded Class Models and Shot-Free Meta Training》
  网络名称:Shot-Free
  文章来源:ICCV 2019
  原文下载:https://arxiv.org/pdf/1905.04398v1.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/107865008
  源码地址:尚未开源
21.《Few-Shot Learning with Graph Neural Networks》
  网络名称:GNN
  文章来源:ICLR2018
  原文下载:https://arxiv.org/pdf/1711.04043.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106257218
  源码地址:https://github.com/vgsatorras/few-shot-gnn
22.《Transductive Episodic-Wise Adaptive Metric for Few-Shot Learning》
  网络名称:TEAM
  文章来源:ICCV2019
  原文下载:https://arxiv.org/pdf/1910.02224.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/108082414
  源码地址:尚未开源
23.《Few-Shot Learning with Global Class Representations》
  网络名称:
  文章来源:ICCV2019
  原文下载:https://arxiv.org/pdf/1908.05257.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/108102436
  源码地址:尚未开源
24.《PARN: Position-Aware Relation Networks for Few-Shot Learning》
  网络名称:PARN
  文章来源:ICCV2019
  原文下载:https://arxiv.org/pdf/1909.04332.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/108168721
  源码地址:尚未开源
25.《Edge-Labeling Graph Neural Network for Few-shot Learning》
  网络名称:EGNN
  文章来源:CVPR2019
  原文下载:https://arxiv.org/pdf/1905.01436.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106504445
  源码地址:https://github.com/khy0809/fewshot-egnn
26.《DPGN: Distribution Propagation Graph Network for Few-shot Learning》
  网络名称:DPGN
  文章来源:CVPR2020
  原文下载:https://arxiv.org/pdf/2003.14247.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/107036021
  源码地址:https://github.com/megvii-research/DPGN
27.《Adaptive Cross-Modal Few-shot Learning》
  网络名称:AM3
  文章来源:NIPS2019
  原文下载:https://arxiv.org/pdf/1902.07104.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106734661
  源码地址:尚未开源
28.《Self-attention relation network for few-shot learning》
  网络名称:SARN
  文章来源:ICMEW2019
  原文下载:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8794911
  论文解读:https://blog.csdn.net/qq_36104364/article/details/108661046
  源码地址:尚未开源
29.《Principal characteristic networks for few-shot learning》
  网络名称:PC-Net
  文章来源:Journal Of Visual Communication And Image Representation
  原文下载:https://www.sciencedirect.com/science/article/pii/S1047320319300574?via%3Dihub
  论文解读:https://blog.csdn.net/qq_36104364/article/details/108680424
  源码地址:尚未开源
30.《Instance-Level Embedding Adaptation for Few-Shot Learning》
  网络名称:AAM
  文章来源:IEEE Access
  原文下载:https://ieeexplore.ieee.org/document/8672561/
  论文解读:https://blog.csdn.net/qq_36104364/article/details/108717735
  源码地址:尚未开源
31.《Generative Adversarial Residual Pairwise Networks for One Shot Learning 》
  网络名称:SRPN
  文章来源:
  原文下载:http://export.arxiv.org/pdf/1703.08033
  论文解读:https://blog.csdn.net/qq_36104364/article/details/108727004
  源码地址:尚未开源
32.《Deep Triplet Ranking Networks for One-Shot Recognition》
  网络名称:Triplet Ranking Networks
  文章来源:
  原文下载:https://arxiv.org/pdf/1804.07275.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/108748774
  源码地址:尚未开源
33.《Large Margin Few-Shot Learning》
  网络名称:L-GNN/L-PN
  文章来源:
  原文下载:https://arxiv.org/pdf/1807.02872.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/108809193
  源码地址:尚未开源
34.《Distribution Consistency Based Covariance Metric Networks for Few-Shot Learning》
  网络名称:CovaMNet
  文章来源:AAAI 2019
  原文下载:https://aaai.org/ojs/index.php/AAAI/article/view/4885/4758
  论文解读:https://blog.csdn.net/qq_36104364/article/details/108960855
  源码地址:https://github.com/WenbinLee/CovaMNet
35 .《RelationNet2: Deep Comparison Columns for Few-Shot Learning》
  网络名称:DCN
  文章来源:IJCNN2020
  原文下载:https://arxiv.org/pdf/1811.07100v3.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/109026610
  源码地址:https://github.com/zhangxueting/DCN

二、基于参数优化的小样本学习算法

1.《Optimization as A Model for Few-shot Learning》
  网络名称:Meta-Learner LSTM
  文章来源:ICLR2017
  原文下载:https://openreview.net/pdf?id=rJY0-Kcll
  论文解读:https://blog.csdn.net/qq_36104364/article/details/105918760
  源码地址:https://github.com/twitter/meta-learning-lstm
2.《Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks》
  网络名称:MAML
  文章来源:ICML2017
  原文下载:https://arxiv.org/pdf/1703.03400.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/105982326
  源码地址:https://github.com/vieozhu/MAML-TensorFlow-1
3.《Meta-SGD: Learning to Learn Quickly for Few-Shot Learning》
  网络名称:Meta-SGD
  文章来源:ICML2018
  原文下载:https://arxiv.org/pdf/1707.09835.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106096500
  源码地址:尚未开源
4.《Task-Agnostic Meta-Learning for Few-shot Learning》
  网络名称:TAML
  文章来源:CVPR2019
  原文下载:https://arxiv.org/pdf/1805.07722.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106419974
  源码地址:尚未开源
5.《On First-Order Meta-Learning Algorithms》
  网络名称:Reptile
  文章来源:
  原文下载:https://arxiv.org/pdf/1803.02999v3.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106587228
  源码地址:尚未开源
6.《Deep Meta-Learning: Learning to Learn in the Concept Space》
  网络名称:DEML
  文章来源:华为诺亚方舟实验室
  原文下载:https://arxiv.org/abs/1802.03596.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106664598
  源码地址:尚未开源
7.《Meta-Learning of Neural Architectures for Few-Shot Learning》
  网络名称:MetaNAS
  文章来源:CVPR2020
  原文下载:https://arxiv.org/abs/1911.11090.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106922398
  源码地址:尚未开源
8.《Attentive Weights Generation for Few Shot Learning via Information Maximization》
  网络名称:AWGIM
  文章来源:CVPR2020
  原文下载:http://openaccess.thecvf.com/content_CVPR_2020/papers/Guo_Attentive_Weights_Generation_for_Few_Shot_Learning_via_Information_Maximization_CVPR_2020_paper.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/107007203
  源码地址:https://github.com/Yiluan/AWGIM
9.《Meta-learning with Latent Embedding Optimization》
  网络名称:LEO
  文章来源:ICLR2019
  原文下载:https://arxiv.org/pdf/1807.05960.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/107641483
  源码地址:https://github.com/deepmind/leo
10.《Meta-learning with differentiable closed-form solvers》
  网络名称:R2-D2/LR-D2
  文章来源:ICLR2019
  原文下载:https://arxiv.org/pdf/1805.08136v1.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/107663895
  源码地址:https://github.com/bertinetto/r2d2
11.《MetAdapt: Meta-Learned Task-Adaptive Architecture for Few-Shot Classification》
  网络名称:MetAdapt
  文章来源:
  原文下载:https://arxiv.org/pdf/1912.00412.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/107730355
  源码地址:尚未开源
12.《Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace》
  网络名称:T-net/MT-net
  文章来源:ICML2018
  原文下载:https://arxiv.org/pdf/1801.05558v3.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/107839417
  源码地址:https://github.com/yoonholee/MT-net
13.《Auto-Meta: Automated Gradient Based Meta Learner Search》
  网络名称:Auto-Meta
  文章来源:NIPS2018
  原文下载:https://arxiv.org/pdf/1806.06927.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/107892045
  源码地址:尚未开源

三、基于外部记忆的小样本学习算法

1.《Meta-Learning with Memory-Augmented Neural Networks》
  网络名称:MANN
  文章来源:ICML2016
  原文下载:https://arxiv.org/pdf/1605.06065v1.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106004802
  源码地址:尚未开源
2.《Meta Networks》
  网络名称:MetaNet
  文章来源:ICML2017
  原文下载:https://arxiv.org/pdf/1703.00837.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106197184
  源码地址:尚未开源
3.《Learning to remember rare events》
  网络名称:
  文章来源:ICLR2017
  原文下载:https://arxiv.org/pdf/1703.03129.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106266079
  源码地址:尚未开源
4.《Memory Matching Networks for One-Shot Image Recognition》
  网络名称:MM-Net
  文章来源:CVPR2018
  原文下载:https://arxiv.org/pdf/1804.08281.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106618750
  源码地址:尚未开源
5.《Dynamic Few-Shot Visual Learning without Forgetting》
  网络名称:
  文章来源:CVPR2018
  原文下载:https://arxiv.org/abs/1804.09458.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106627781
  源码地址:https://github.com/gidariss/FewShotWithoutForgetting

四、基于数据增强的小样本学习算法

1.《Low-Shot Visual Recognition by Shrinking and Hallucinating Features》
  网络名称:SGM
  文章来源:ICCV2017
  原文下载:https://arxiv.org/pdf/1606.02819v1.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106121741
  论文解读(新):https://blog.csdn.net/qq_36104364/article/details/107534841
  源码地址:https://github.com/facebookresearch/low-shot-shrink-hallucinate
2.《Meta-learning for semi-supervised few-shot classification》
  网络名称:
  文章来源:ICLR2018
  原文下载:https://arxiv.org/pdf/1906.00562.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106243619
  源码地址:https://github.com/renmengye/few-shot-ssl-public
3.《LaSO: Label-Set Operations networks for multi-label few-shot learning》
  网络名称:LaSONet
  文章来源:CVPR2019
  原文下载:https://arxiv.org/pdf/1902.09811v1.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106333259
  源码地址:尚未开源
4.《Image Deformation Meta-Networks for One-Shot Learning》
  网络名称:IDeMe-Net
  文章来源:CVPR2019
  原文下载:https://arxiv.org/pdf/1905.11641v1.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106355560
  源码地址:https://github.com/tankche1/IDeMe-Net
5.《Few-shot Learning via Saliency-guided Hallucination of Samples》
  网络名称:SalNet
  文章来源:CVPR2019
  原文下载:https://arxiv.org/pdf/1904.03472v1.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106523254
  源码地址:尚未开源
6.《Low-Shot Learning from Imaginary Data》
  网络名称:PMN
  文章来源:CVPR2018
  原文下载:https://arxiv.org/pdf/1801.05401v1.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106590394
  源码地址:尚未开源
7.《Instance Credibility Inference for Few-Shot Learning》
  网络名称:ICI
  文章来源:CVPR2020
  原文下载:http://arxiv.org/abs/2003.11853.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106927937
  源码地址:https://github.com/Yikai-Wang/ICI-FSL
8.《Adversarial Feature Hallucination Networks for Few-Shot Learning》
  网络名称:AFHN
  文章来源:CVPR2020
  原文下载:https://arxiv.org/pdf/2003.13193.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/107015984
  源码地址:尚未开源
9.《∆-encoder: an effective sample synthesis method for few-shot object recognition》
  网络名称:∆-encoder
  文章来源:NIPS2018
  原文下载:https://arxiv.org/pdf/1806.04734.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/107689571
  源码地址:https://github.com/EliSchwartz/DeltaEncoder

五、基于语义信息的小样本学习算法

1.《Large-Scale Few-Shot Learning: Knowledge Transfer With Class Hierarchy》
  网络名称:
  文章来源:CVPR2019
  原文下载:https://www.researchgate.net/profile/Zhiwu_Lu2/publication/333602008_Large-Scale_Few-Shot_Learning_Knowledge_Transfer_With_Class_Hierarchy/links/5cf61bffa6fdcc847502e9de/Large-Scale-Few-Shot-Learning-Knowledge-Transfer-With-Class-Hierarchy.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106301958
  源码地址:尚未开源
2.《Generalized Zero- and Few-Shot Learning via Aligned Variational Autoencoders》
  网络名称:CADA-VAE
  文章来源:CVPR2019
  原文下载:https://arxiv.org/pdf/1812.01784.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106381143
  源码地址:https://github.com/edgarschnfld/CADA-VAE-PyTorch
3.《TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning》
  网络名称:TAFE-Net
  文章来源:CVPR2019
  原文下载:https://arxiv.org/pdf/1904.05967.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106412565
  源码地址:https://github.com/ucbdrive/tafe-net
4.《Baby Steps Towards Few-Shot Learning with Multiple Semantics》
  网络名称:Multiple-Semantics
  文章来源:CVPR2019
  原文下载:https://arxiv.org/pdf/1906.01905.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106566595
  源码地址:尚未开源
5.《Semantic Feature Augmentation in Few-shot Learning》
  网络名称:Dual-TriNet
  文章来源:ECCV2018
  原文下载:https://arxiv.org/pdf/1804.05298v1.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106714703
  源码地址:https://github.com/tankche1/Semantic-Feature-Augmentation-in-Few-shot-Learning

6.《Learning Compositional Representations for Few-Shot Recognition》
  网络名称:comp
  文章来源:ICCV2019
  原文下载:https://arxiv.org/pdf/1812.09213.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/108126197
  源码地址:https://sites.google.com/view/comprepr/home
7.《Few-Shot Image Recognition with Knowledge Transfer》
  网络名称:KTN
  文章来源:ICCV2019
  原文下载:
  论文解读:https://blog.csdn.net/qq_36104364/article/details/108146570
  源码地址:尚未开源

六、其他类型的小样本学习算法

1.《Active One-shot Learning》
  网络名称:
  文章来源:NIPS2016
  原文下载:https://arxiv.org/pdf/1702.06559.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106141748
  源码地址:尚未开源
2.《Spot and Learn: A Maximum-Entropy Patch Sampler for Few-Shot Image Classification》
  网络名称:
  文章来源:CVPR2019
  原文下载:http://openaccess.thecvf.com/content_CVPR_2019/papers/Chu_Spot_and_Learn_A_Maximum-Entropy_Patch_Sampler_for_Few-Shot_Image_CVPR_2019_paper.pdf?source=post_page
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106428548
  源码地址:尚未开源
3.《Meta-Learning with Temporal Convolutions》/《A simple neural attentive meta-learner》
  网络名称:TCML/SNAIL
  文章来源:ICLR2018
  原文下载:https://arxiv.org/pdf/1707.03141v2.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106235147
  源码地址:尚未开源
4.《Meta-Transfer Learning for Few-Shot Learning》
  网络名称:MTL
  文章来源:CVPR2019
  原文下载:https://arxiv.org/pdf/1812.02391v2.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106403565
  源码地址:https://github.com/yaoyao-liu/meta-transfer-learning
5.《Learning to propagate labels: Transductive propagation network for few-shot learning》
  网络名称:TPN
  文章来源:ICLR2019
  原文下载:http://arxiv.org/abs/1805.10002.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106670910
  源码地址:尚未开源
6.《Few-Shot Class-Incremental Learning》
  网络名称:TOPIC
  文章来源:CVPR2020
  原文下载:https://arxiv.org/pdf/2004.10956.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106855307
  源码地址:尚未开源
7.《Learning to Select Base Classes for Few-shot Classification》
  网络名称:
  文章来源:CVPR2020
  原文下载:https://arxiv.org/abs/2004.00315.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106956157
  源码地址:尚未开源
8.《TransMatch: A Transfer-Learning Scheme for Semi-Supervised Few-Shot Learning》
  网络名称:TransMatch
  文章来源:CVPR2020
  原文下载:https://arxiv.org/pdf/1912.09033.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/107022258
  源码地址:尚未开源
9.《A closer look at few-shot classification》
  网络名称:CloserLook
  文章来源:ICLR2019
  原文下载:https://arxiv.org/pdf/1904.04232v1.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/107715449
  源码地址:https://github.com/wyharveychen/CloserLookFewShot
10.《Low-Shot Learning with Imprinted Weights》
  网络名称:Imprinting
  文章来源:CVPR 2018
  原文下载:https://arxiv.org/pdf/1712.07136.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/107879445
  源码地址:尚未开源
11.《Boosting Few-Shot Visual Learning with Self-Supervision》
  网络名称:
  文章来源:ICCV 2019
  原文下载:https://arxiv.org/pdf/1906.05186v1.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/107979326
  源码地址:尚未开源
12.《Diversity with Cooperation: Ensemble Methods for Few-Shot Classification》
  网络名称:Robust-dist
  文章来源:ICCV2019
  原文下载:https://arxiv.org/pdf/1903.11341v1.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/108004435
  源码地址:尚未开源
13.《SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning》
  网络名称:SimpleShot
  文章来源:
  原文下载:https://arxiv.org/pdf/1911.04623.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/108020139
  源码地址:https://github.com/mileyan/simple_shot
14.《Few-shot Classification via Adaptive Attention》
  网络名称:
  文章来源:
  原文下载:https://arxiv.org/pdf/2008.02465.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/108198690
  源码地址:尚未开源
15.《Few-Shot Image Recognition by Predicting Parameters from Activations》
  网络名称:PPA
  文章来源:CVPR 2018
  原文下载:http://arxiv.org/abs/1706.03466.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/107957428
  源码地址:尚未开源
16.《Generating Classification Weights with GNN Denoising Autoencoders for Few-Shot Learning》
  网络名称:DAE
  文章来源:CVPR2019
  原文下载:https://arxiv.org/pdf/1905.01102v1.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106341245
  源码地址:https://github.com/gidariss/wDAE_GNN_FewShot
17.《Few-Shot Learning Through an Information Retrieval Lens》
  网络名称:mAP-SSVM,mAP-DLM
  文章来源:NIPS2017
  原文下载:https://arxiv.org/pdf/1707.02610.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/109002432
  源码地址:尚未开源

七、小样本语义分割算法

1.《One-Shot Learning for Semantic Segmentation》
  网络名称:
  文章来源:BMVC2017
  原文下载:https://arxiv.org/pdf/1709.03410.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106762117
  源码地址:https://github.com/lzzcd001/OSLSM
2.《Conditional networks for few-shot semantic segmentation》
  网络名称:co-FCN
  文章来源:ICLR2018
  原文下载:https://openreview.net/pdf?id=SkMjFKJwG
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106766084
  源码地址:尚未开源
3.《CANet: Class-Agnostic Segmentation Networks with Iterative Refinement and Attentive Few-Shot Learning》
  网络名称:CANet
  文章来源:CVPR2019
  原文下载:https://arxiv.org/pdf/1903.02351.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106556797
  源码地址:尚未开源
4.《PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment》
  网络名称:PANet
  文章来源:ICCV2019
  原文下载:https://arxiv.org/pdf/1908.06391.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106781918
  源码地址:尚未开源

八、小样本目标检测算法

1.《LSTD: A Low-Shot Transfer Detector for Object Detection》
  网络名称:LSTD
  文章来源:AAAI2018
  原文下载:https://arxiv.org/pdf/1803.01529.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106806507
  源码地址:尚未开源
2.《Few-Example Object Detection with Model Communication》
  网络名称:MSPLD
  文章来源:TPAMI2018
  原文下载:https://arxiv.org/pdf/1706.08249.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106824810
  源码地址:尚未开源
3.《Incremental Few-Shot Object Detection》
  网络名称:ONCE
  文章来源:CVPR2020
  原文下载:https://arxiv.org/pdf/2003.04668.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106838242
  源码地址:尚未开源
4.《Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector》
  网络名称:
  文章来源:CVPR2020
  原文下载:https://arxiv.org/abs/1908.01998.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106873321
  源码地址:尚未开源
5.《Few-shot Object Detection via Feature Reweighting》
  网络名称:
  文章来源:ICCV2019
  原文下载:https://arxiv.org/abs/1812.01866.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106882520
  源码地址:尚未开源
6.《Meta R-CNN : Towards General Solver for Instance-level Low-shot Learning》
  网络名称:Meta R-CNN
  文章来源:ICCV2019
  原文下载:http://arxiv.org/abs/1909.13032v1.pdf
  论文解读:https://blog.csdn.net/qq_36104364/article/details/106886640
  源码地址:https://github.com/yanxp/MetaR-CNN
7.《》
  网络名称:
  文章来源:
  原文下载:
  论文解读:
  源码地址:尚未开源
如果大家对于深度学习与计算机视觉领域感兴趣,希望获得更多的知识分享与最新的论文解读,欢迎关注我的个人公众号“深视”。

  • 178
    点赞
  • 784
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 39
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 39
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深视

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值