机器学习(七) PCA与梯度上升法 (上)

一、什么是PCA

主成分分析 Principal Component Analysis

一个非监督学的学习算法

主要用于数据的降维

通过降维,可以发现更便于人类理解的特征

其他应用:可视化;去噪

 

 

 

 第一步:将样例的均值归零(demean)

 

 

 

 

 

 

 

 

 

 

 二、使用梯度上升法求解PCA问题

梯度上升法解决主成分分析问题 

 

 

 

 

 

 

  三、求数据的主成分PCA

 

 

 

 

四、求数据的主成分 PCA

求数据的前 N 个主成分

 求出第一个主成分以后,如何求出下一个主成分?

数据进行改变,将数据在第一个主成分的分量去掉。

 

 

  我写的文章只是我自己对bobo老师讲课内容的理解和整理,也只是我自己的弊见。bobo老师的课 是慕课网出品的。欢迎大家一起学习。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值