目录
(2) 基于 AE 自编码器的时间序列异常检测代码实现(Tensorflow,Keras前端接口)
(3)基于 LSTM_CNN 的时间序列异常检测代码实现(Tensorflow,Keras前端接口)
(3)基于 DAGMM 的时间序列异常检测代码实现(Tensorflow)
(4)基于 One-Class SVM 的时间序列异常检测代码实现
异常检测算法Seasonal Hybrid ESD及R语言实现
前言
时间序列是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列。正如人们常说,人生的出场顺序很重要,时间序列中隐藏着一些过去与未来的关系。时间序列分析试图通过研究过去来预测未来。
时间序列分析在工程、金融、科技等众多领域有着广泛的应用。在大数据时代,时间序列分析已经成为 AI 技术的一个分支,通过将时间序列分析与分类模型相结合,更好的应用于数据检测、预测等场景。
几个高频面试题目
1.如果时间序列存在异常值,对时间序列分析有什么影响
过拟合的程度造成很大影响。
因为这是基于所有数据的