MATLAB算法实战应用案例精讲-【数据分析】时序异常检测(补充篇)(附Java、R语言和python代码实现)

目录

前言

几个高频面试题目

1.如果时间序列存在异常值,对时间序列分析有什么影响

知识储备

1.时间序列常用模型

2. 时间序列预处理

3 平稳时间序列分析

4. 非平稳时间序列分析

5.餐厅销售数据建模

算法原理

异常分类

时间序列数据性质

时间序列的特征工程

1.非数值型变量处理方法

2. 特征工程构造思路

2.特征选择的方法

时间序列异常检测方法

1. 传统方法

2. 深度学习

深度学习分类角度

异常检测策略​编辑

训练和预处理技术

1. 损失函数

2. 批量学习和在线增量

3. 去噪

应用案例

1.时间序列异常值检测

2.多维时间序列异常检测

1. 时间序列分解模型

2.时间序列异常检测

3. 时序预测

4. 根因分析

3. 基于KDD99数据集的时间序列异常检测实战 

(1)数据预处理

(2) 基于 AE 自编码器的时间序列异常检测代码实现(Tensorflow,Keras前端接口)

(3)基于 LSTM_CNN 的时间序列异常检测代码实现(Tensorflow,Keras前端接口)

(3)基于 DAGMM 的时间序列异常检测代码实现(Tensorflow) 

(4)基于 One-Class SVM 的时间序列异常检测代码实现

(5) 总结

代码实现

 R语言

异常检测算法Seasonal Hybrid ESD及R语言实现

Java

LOF方法时序数据异常检测

LOF-ICAD方法时序数据异常检测

python


前言

时间序列是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列。正如人们常说,人生的出场顺序很重要,时间序列中隐藏着一些过去与未来的关系。时间序列分析试图通过研究过去来预测未来。

时间序列分析在工程、金融、科技等众多领域有着广泛的应用。在大数据时代,时间序列分析已经成为 AI 技术的一个分支,通过将时间序列分析与分类模型相结合,更好的应用于数据检测、预测等场景。

几个高频面试题目

1.如果时间序列存在异常值,对时间序列分析有什么影响

过拟合的程度造成很大影响。
因为这是基于所有数据的

图像处理在计算机视觉领域有着广泛的应用,其中三维重建是一个重要的研究方向。通过对多个二维图像进行处理和分析,可以实现对三维场景的重建和可视化。下面就以matlab算法实战应用案例精讲三维重建为例,介绍其实现方法和代码。 首先,三维重建的实现需要用到一组二维图像,可以通过摄像机或者其他方式获取到。然后,在matlab中,我们可以使用一些图像处理工具包如Image Processing Toolbox或者Computer Vision Toolbox来进行图像处理和分析。比如,可以使用特征点匹配的方法来找到多个二维图像之间的对应关系,然后通过三角测量法或者其他三维重建算法来计算相应的三维点坐标。 同时,我们还可以使用matlab的绘图工具来对获取到的三维点云数据进行可视化展示,比如绘制三维点云或者三维曲面。这样,就可以实现对三维场景的重建和可视化,为后续的虚拟现实、增强现实等应用奠定基础。 此外,如果希望使用python实现三维重建,也可以借助一些图像处理和计算机视觉的库,比如OpenCV、numpy、scipy等。在python中,同样可以通过特征点匹配和三维重建算法实现三维重建,并使用matplotlib等库来进行可视化展示。 综上所述,通过matlabpython实现三维重建需要结合图像处理、计算机视觉、数学建模等多个领域的知识和工具,通过对多个二维图像的处理和分析,实现对三维场景的重建和可视化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值