目录
当rep库满时,此时又需要填充新的非支配个体,那么该如何抉择这些非支配个体是删除还是保留呢?
全部与局部最优位置的选取
基于莱维飞行和偏好信息的多目标粒子群优化算法的基因 选择方法
前言
粒子群算法也称为鸟群觅食算法(
Particle Swarm Optimization
),缩写为
PSO
[90]
。该算法是由
J.Kennedy
和
R.C.Eberhart
等在
1995
年通过对鸟群捕食行为进行
本文深入探讨了多目标粒子群优化(MOPSO)算法,包括基本原理、避免局部最优的策略、帕累托最优和算法的改进方法。文章详细讲解了PSO算法的思想、流程,并介绍了基于莱维飞行、模糊推理和速度反馈的MOPSO算法变种,同时提供了Python和MATLAB的代码实现。
订阅专栏 解锁全文
1933

被折叠的 条评论
为什么被折叠?



