MATLAB算法实战应用案例精讲-【智能优化算法】多目标粒子群优化(MOPSO)(补充篇)(附MATLAB和python代码实现)

本文深入探讨了多目标粒子群优化(MOPSO)算法,包括基本原理、避免局部最优的策略、帕累托最优和算法的改进方法。文章详细讲解了PSO算法的思想、流程,并介绍了基于莱维飞行、模糊推理和速度反馈的MOPSO算法变种,同时提供了Python和MATLAB的代码实现。

目录

前言

几个高频面试题目

​​​​​​​当rep库满时,此时又需要填充新的非支配个体,那么该如何抉择这些非支配个体是删除还是保留呢?

如何避免算法陷入局部最优?

知识储备

粒子群算法(PSO)

基本思想

基本流程

​编辑

流程图与伪代码 

算法的改进研究

参数设置

帕累托

算法原理

粒子群优化算法

基本原理

参数分析

算法描述 

算法思想

外部档案的维护

全局最优解的选取

个体最优解的更新

全部与局部最优位置的选取​​​​​​​

多目标粒子群算法的更新策略

多目标粒子群算法中应注意的问题

 数学模型

算法步骤

算法流程图

应用场景

 算法拓展

基于莱维飞行和双存档机制的多目标粒子群优化算法

改进的莱维飞行策略

一个新颖的领导粒子选择策略

MOPSO-LFDA 算法的流程图及步骤

基于莱维飞行和偏好信息的多目标粒子群优化算法的基因 选择方法

基因表达谱数据与常用的基因选择方法

基于莱维飞行和偏好信息的多目标粒子群优化算法的基因选择方法

基于互信息反馈模型的多目标粒子群优化算法

 基于适应度值的信息反馈模型

互信息

基于互信息反馈模型的多目标粒子群优化算法

基于模糊推理反馈模型的多目标粒子群优化算法

最大熵原理

基于最大熵的模糊推理

基于最大熵预测的信息反馈模型

基于模糊推理反馈模型的多目标粒子群优化算法

基于速度反馈的多目标粒子群优化算法

速度反馈模型

V-MOPSO 算法步骤和流程

代码实现

python

MATLAB


前言

粒子群算法也称为鸟群觅食算法( Particle Swarm Optimization ),缩写为
PSO [90] 。该算法是由 J.Kennedy R.C.Eberhart 等在 1995 年通过对鸟群捕食行为进行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值