MATLAB算法实战应用案例精讲-【概念篇】构建数据指标方法(最终篇)

目录

前言

算法原理

指标体系的意义

1. 更好进行管理

2. 更优打造业务

3. 更早构造壁垒

什么是好的数据指标

如何寻找正确的指标

如何设计指标体系

1. 北极星指标

2. 一级指标

(1)AARRR模型的拆分策略

(2)数据指标制定

3. 二级指标

4.GSM模型

5.OSM模型

6.MECE模型

数据指标体系建设的步骤

(1)确立公司业务的核心指标

(2)确定用户行为的关键指标

(3)进行业务需求的多维拆解

(4)依优先级进行系统性整合

应用案例

网易传媒数仓体系架构

业务线

规范定义

模型设计

dwd(edm)层

网易传媒数仓指标体系建设

准备工作

维度建设

指标建设

表建设

收益

电商业务线指标体系

Step1:利润公式拆解

Step2:业务模型拆分

Step3:指标分类

电商数据指标体系搭建实战

GrowingIO 团队完整的数据指标体系搭建

1, OSM 模型:业务目标下沉式实现数据驱动的最核心逻辑

2, UJM 作用:梳理用户生命旅程,与业务目标耦合

3, OSM × UJM:关联业务目标与用户旅程

4, 围绕业务场景推动指标体系落地

5,GrowingIO 数据指标体系搭建最佳实践


 

前言

在衡量业务经营状况的过程中,单一数据指标量化很可能较为片面,只能了解业务某一方面的大体情况,导致无法实现全场景串联、把控业务整体发展、定位和衡量业务问题或质量。

而数据指标体系化,能将零散的、有关联性的指标,按照业务模型将指标不同的属性分类及分层串联起来,通过单点看到全局,通过全局解决单点问题。同时通过数据分析,对全域、全过程、全方位的业务数据进行量化,建立全面的、可衡量的标准,也能体系化展现、衡量和预测业务的发展。最终,优化业务流程和组织架构,改善和创新企业的产品和服务。

因此,只有搭建系统的数据指标体系,才能全面衡量业务发展情况,促进业务有序增长。

算法原理

首先,我们需要了解数据指标的定义和范畴,它是企业运营过程中,对已记录历史信息进行处理,转化成为数字。根

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值