目录
03通过训练KNN、高斯贝叶斯和SVM模型对MNIST数据集分类
Super Point + Super Glue特征检测和匹配算法:
前言
特征检测算法的意义在于从图像或视频中提取出具有独特性质的特征点,这些特征点可以代表图像中的关键信息。这些特征点通常具有旋转、尺度和光照变化的不变性,使得它们在图像的不同位置和角度下都能够被准确地检测到。
特征匹配算法的意义在于将两个或多个图像中的特征点进行对应,以实现图像间的关联和匹配。通过将特征点进行匹配,可以进行目标跟踪、图像配准、三维重建等任务。
目前应用在多个领域:
- 1.目标识别和跟踪:通过检测和匹配图像中的特征点,可以实现目标在视频中的跟踪和定位,如自动驾驶中的目标识别和跟踪。
- 2.图像配准和拼接:通过匹配图像中的特征点,可以将多幅图像进行配准和拼接,生成全景图像或三维重建模型。
- 3.增强现实(AR)和虚拟现实(VR):特征检测和匹配可用于将虚拟对象与真实世界进行对齐和融合,实现更逼真的AR和VR体验。
- 4.图像检索和分类:通过匹配图像中的特征点,可以对图像进行相似性搜索和分类,用于图像检索和内容识别。
- 5.三维重建和建模