目标检测YOLO实战应用案例100讲-基于多目标追踪的交通场景异常检测

目录

知识储备

多目标追踪算法,项目部署原理及方案

一、以卡尔曼滤波和匈牙利、KM匹配的后端追踪优化算法(代表性的应用有SORT、DEEP-SORT)

二、基于多线程的单目标跟踪器的多目标追踪算法(代表性的算法有KCF、LEDS)

三、 基于深度学习端到端的多目标跟踪算法。(代表性的算法有SST)

第一类算法原理介绍:

第二类算法原理介绍:

第三类算法原理介绍:

前言

国内外研究现状

目标检测

目标追踪

异常检测

2多目标追踪与异常检测概述

2.1研究框架

2.1.1目标检测算法

2.1.2数据关联与多目标追踪算法

2.1.3异常轨迹算法

2.2数据集简介

2.2.1目标检测数据集

2.2.2多目标追踪数据集

2.2.3异常轨迹数据集

2.3模型评价标准

2.3.1目标检测算法评价标准

2.3.2多目标追踪算法评价标准

2.3.3异常轨迹检测算法评价标准

3目标检测算法

3.1引言

3.2数据增强:模仿真实场景下遮挡问题

3.3特征提取网络改进:卷积神经网络注意力机制

3.3.1 CBAM:卷积注意力机制模块

3.3.2 CoordAtt:协调注意力模块

3.3.3阶段性实验结果

3.4检测头改进:解耦检测头

3.4.1解耦检测头

3.4.2阶段性实验结果



本文篇幅较长,分为上下两篇,下篇详见基于多目标追踪的交通场景异常检测(续)

知识储备

多目标追踪算法,项目部署原理及方案

多目标追踪顾名思义就是跟踪视频画面中的多个目标,得到这些目标的运动轨迹;核心在于目标检测和数据关联,即在每一帧进行目标检测,再利用目标检测的结果来进行目标跟踪,后面一步一般称之为数据关联,数据关联更多依赖于手

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值