目标检测YOLO实战应用案例100讲-基于目标检测的水稻病害识别

目录

前言

国内外研究现状 

目标检测算法研究现状 

作物病害诊断研究现状 

2  目标检测相关理论基础  

2.1  卷积神经网络 

2.2  基于深度学习的目标检测算法 

2.2.1  R-CNN系列目标检测算法 

2.2.2  YOLO系列目标检测算法 

3  基于改进Faster R-CNN的水稻病害识别模型  

3.1 构建水稻病害样本库  

3.1.1 图像采集 

3.1.2 图像增强 

3.1.3 图像标注 


本文篇幅较长,分为上下两篇,下篇详见基于目标检测的水稻病害识别(续)​​​​​​​

 

前言

水稻是我国播种面积最大、产量最高的粮食作物之一,实现水稻的稳产、高产一直 是我国农业生产的目标[1]。随着农业生产水平发展提高,水稻产量得到了极大提高[2]。然 而水稻的生长和产量容易受到环境等多种因素的影响出现水稻病害,无法平稳地实现水 稻高产、高质量的目标。水稻稻瘟病、胡麻斑病、细菌性条斑病作为水稻最常见的主要 病害,如果不能及时发现并采取防治措施,会严重影响水稻产量,造成巨大经济损失。 因此在水稻生长过程中快速、准确地识别病害类型,确定病害位置,采取相关措施进行 防治,能够有效减

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值