MATLAB基础应用精讲-【数模应用】ICC组内相关系数(附MATLAB、R语言和python代码实现)

目录

前言

几个高频面试题目

ICC、Kappa、AUC对比

算法原理

什么是组内相关系数(ICC)

ICC指标在团队合作中的作用

SPSSPRO

1、作用

2、输入输出描述

3、案例示例

4、案例数据

5、案例操作

6、输出结果分析

7、注意事项

8、模型理论

SPSSAU

ICC 组内相关系数案例

1、背景

2、理论

3、操作

4、SPSSAU 输出结果

5、文字分析

6、剖析

疑难解惑

重复测量方差如何进行重测信度分析?

EXCEL

SPSS

一、问题与数据

二、SPSS分析方法

三、结果解读

四、 撰写结论

案例分析 

一、案例介绍

二、问题分析

三、软件操作及结果解读

四、结论

五、知识小贴士

代码实现

MATLAB

R语言

python


 

前言

‌ICC组内相关系数是一种用于衡量和评价观察者间信度和复测信度的统计指标。 它由‌Bartko于1966年提出,主要用于衡量多个评定者对同一组观测对象的评价一致性,或者同一评定者在不同时间点的评价一致性。ICC的值介于0到1之间,其中0表示完全不一致,1表示完全一致。具体的值可以进一步细分为不同的可信度水平,例如,低于0.4表示信度较差,而大于0.75则表示信度良好。

    应用场景:ICC广泛应用于多个领域,如医学诊断、教育评估等。例如,在医学诊断中,多个医生对同一组病人的诊断结果可以通过ICC来评估他们之间的诊断一致性。在教育评估中,多个评分者对同一组学生的作业评分也可以通过ICC来评估评分者之间的一致性。

    计算方法:ICC的计算涉及到将总的变异度分解为组间变异度和组内变异度,通过比较这两部分变异度来得出ICC的值。具体的计算方法可以通过统计软件如‌SPSS和‌SAS实现。

    类型与模型:ICC有不同的模型和类型,如One-way和Two-way模型,以及‌Absolute ag

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值