MATLAB算法实战应用案例精讲-【人工智能】迁移学习(附python代码实现)

目录

前言

高频面试题目

几种迁移学习方式的对比

微调的注意事项

算法原理

迁移学习提出背景

几个常用概念

算法思想

什么是迁移学习

​模型的训练与预测

为什么要迁移学习?

开发模型的方法

预训练模型方法

什么情况下可以使用迁移学习?

迁移学习的类型

应用领域

迁移学习未来的发展方向

优势和挑战

3.1 优势

3.2 挑战

应用案例

1. 项目描述

2. 数据集介绍

3. 项目要求

4. 场景和为什么要进行领域对抗性训练

5. 神经网络的领域对抗训练(DaNN)

6 代码实现

1. 数据处理

2. 自定义数据集读取类

3. 将数据路径保存成 .txt 文件

4. 网络模型搭建

5. 构建DataLoader

6. 模型准备

7. 训练

8. 可视化训练指标

9. 预测保存

代码实现

python


前言

迁移学习是一种使用已经学习到的知识来加速、提高新任务学习效果的机器学习方法。在传统的机器学习中,每个任务都需要通过大量的数据进行单独地学习,然而当我们面对新的任务时,如果训练数据不足或者需要更高的准确率,重新开始训练通常代价昂贵。迁移学习的思想是将旧任务的学习结果(称为源域)应用到新任务(称为目标域),这样就可以降低目标任务的训练成本,不过需要注意的是源领域与目标领域之间存在一定的相似性或联系。另外,迁移学习还可通过深层神经网络的模型去发现源域和目标域之间更加不易察觉或者复杂的联系。迁移学习在很多领域都有着广泛的应用,比如自然语言处理、计算机视觉、医疗健康等。

高频面试题目

几种迁移学习方式的对比

1)第一种和第二种训练得到的模型本质上并没有什么区别,但是第二种的计算复杂度要远远优于第一种。 2)第三种是对前两种方法的补充,以进一步提升模型性能。要注意的是,这种方法并不一定能真的对模型有所提升。 本质上来讲

图像处理在计算机视觉领域有着广泛的应用,其中三维重建是一个重要的研究方向。通过对多个二维图像进行处理和分析,可以实现对三维场景的重建和可视化。下面就以matlab算法实战应用案例精讲三维重建为例,介绍其实现方法和代码。 首先,三维重建的实现需要用到一组二维图像,可以通过摄像机或者其他方式获取到。然后,在matlab中,我们可以使用一些图像处理工具包如Image Processing Toolbox或者Computer Vision Toolbox来进行图像处理和分析。比如,可以使用特征点匹配的方法来找到多个二维图像之间的对应关系,然后通过三角测量法或者其他三维重建算法来计算相应的三维点坐标。 同时,我们还可以使用matlab的绘图工具来对获取到的三维点云数据进行可视化展示,比如绘制三维点云或者三维曲面。这样,就可以实现对三维场景的重建和可视化,为后续的虚拟现实、增强现实等应用奠定基础。 此外,如果希望使用python实现三维重建,也可以借助一些图像处理和计算机视觉的库,比如OpenCV、numpy、scipy等。在python中,同样可以通过特征点匹配和三维重建算法实现三维重建,并使用matplotlib等库来进行可视化展示。 综上所述,通过matlabpython实现三维重建需要结合图像处理、计算机视觉、数学建模等多个领域的知识和工具,通过对多个二维图像的处理和分析,实现对三维场景的重建和可视化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值