第P3周:Pytorch实现天气识别

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

🍺要求:

本地读取并加载数据。
测试集accuracy到达93%

🍻拔高:

测试集accuracy到达95%
调用模型识别一张本地图片
🏡 我的环境:
语言环境:Python3.8
编译器:jupyter notebook
深度学习环境:Pytorch
数据:🔗百度网盘(提取码:hqij )

一、 前期准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets

import os,PIL,pathlib

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device

torch是PyTorch的核心库
torch.nn是神经网络模块,包括定义各种神经网络层和激活函数
torchvision.transforms包含了各种图像处理工具
torchvision.datasets包含了一些常用的数据集,如CIFAR10、MNIST等
os是Python中的一个操作系统接口模块,可以处理文件和目录
PIL(Python Imaging Library)是Python的一个图像处理库
pathlib是Python 3中新添加的一个面向对象的文件路径库,可以方便地处理文件和目录路径。

2. 导入数据


定义数据所在文件夹的路径,将数据所在文件夹的路径转换为pathlib.Path对象,方便后续处理,然后获取数据文件夹中所有文件的路径,使用glob(‘*’)可以匹配文件夹中的所有文件,最后将数据文件夹中的所有类别名称提取出来,存储在classeNames列表中。这里使用了列表解析式,遍历data_paths中的每个文件路径,将其转换为字符串类型并使用split()方法将其按照“/”分隔,然后取得分隔后的第2个元素(从0开始计数),即类别名称。最后将类别名称存储在classeNames列表中。

data_dir = './data/weather_photos/'
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))
print(data_paths)
classNames = [str(path).split("\\")[2] for path in data_paths]
classNames

import matplotlib.pyplot as plt
from PIL import Image

image_folder = './data/weather_photos/cloudy/'

image_files = [f for f in os.listdir(image_folder) if f.endswith
              ((".jpg",".png",".jpeg"))]

fig, axes = plt.subplots(3, 8, figsize=(16, 6))

for ax, img_file in zip(axes.flat, image_files):
    img_path = os.path.join(image_folder, img_file)
    img = Image.open(img_path)
    ax.imshow(img)
    ax.axis('off')
    
plt.tight_layout()
plt.show()

 

 

然后我们定义数据集所在的总文件夹路径,定义数据集的数据转换方式,将Resize()函数用于将输入图片resize成统一尺寸,ToTensor()函数用于将PIL Image或numpy.ndarray转换为tensor,并将像素值归一化到[0,1]之间,Normalize()函数用于将tensor标准化处理,转换为标准正太分布(高斯分布),从而使模型更容易收敛。其中mean和std分别表示从数据集中随机抽样计算得到的均值和标准差。使用datasets.ImageFolder()函数创建数据集,total_datadir表示数据集所在的总文件夹路径,transform参数表示使用train_transforms数据转换方式对数据进行转换。最终得到的total_data为一个ImageFolder对象,包含了数据集中的所有图片和标签信息。

total_datadir = './data/weather_photos/'

train_transforms = transforms.Compose([
    transforms.Resize([224,224]),
    transforms.ToTensor(),
   transforms.Normalize(mean=[0.485, 0.456, 0.406],
                              std=[0.229, 0.224, 0.225])
])

total_data = datasets.ImageFolder(total_datadir, transform = train_transforms)
total_data

3. 划分数据集

然后我们将导入的数据进行划分数据集,计算训练集大小,将数据集总数的80%作为训练集大小。计算测试集大小,将数据集总数减去训练集大小得到测试集大小。最后使用torch.utils.data.random_split()函数将数据集分为训练集和测试集,total_data表示需要被分割的数据集,[train_size, test_size]表示分割后训练集和测试集的大小,train_dataset和test_dataset分别表示分割后的训练集和测试集。该函数可以随机地将数据集划分为训练集和测试集,比较适用于小数据集。

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

train_size,test_size

然后我们设置每次训练时输入的数据批次大小,这里设置为32,即每次输入32张图片进行训练。然后使用torch.utils.data.DataLoader()函数创建训练集的数据加载器train_dl。其中train_dataset表示需要加载的数据集,batch_size表示每次输入的数据批次大小,shuffle=True表示打乱数据集顺序,num_workers=1表示使用一个进程来加载数据。最后使用torch.utils.data.DataLoader()函数创建测试集的数据加载器test_dl。其中test_dataset表示需要加载的数据集,batch_size表示每次输入的数据批次大小,shuffle=True表示打乱数据集顺序,num_workers=1表示使用一个进程来加载数据。注意到这里使用了和训练集相同的batch_size大小和相同的shuffle选项来保证训练和测试时的一致性。

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True, num_workers=1)

使用test_dl数据加载器遍历测试集的数据,每次加载一个批次的数据,其中X表示图片数据,y表示图片标签。打印当前批次的图片数据X的形状,其中N表示批次大小,C表示通道数,H表示图片的高度,W表示图片的宽度。最后打印当前批次的标签数据y的形状和数据类型dtype

for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

 

二、构建简单的CNN网络


对于一般的CNN网络来说,
都是由特征提取网络和分类网络构成,
其中特征提取网络用于提取图片的特征,
分类网络用于将图片进行分类。

⭐1. torch.nn.Conv2d()详解
函数原型:
torch.nn.Conv2d
(in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
padding_mode=‘zeros’,
device=None,
dtype=None)
关键参数说明:
in_channels ( int ) – 输入图像中的通道数
out_channels ( int ) – 卷积产生的通道数
kernel_size ( int or tuple ) – 卷积核的大小
stride ( int or tuple , optional ) – 卷积的步幅。默认值:1
padding ( int , tuple或str , optional ) – 添加到输入的所有四个边的填充。默认值:0
padding_mode (字符串,可选) – ‘zeros’, ‘reflect’, ‘replicate’或’circular’. 默认:‘zeros’
⭐2. torch.nn.Linear()详解
函数原型:
torch.nn.Linear
(in_features,
out_features,
bias=True,
device=None,
dtype=None)
关键参数说明:
in_features:每个输入样本的大小
out_features:每个输出样本的大小
⭐3. torch.nn.MaxPool2d()详解
函数原型:
torch.nn.MaxPool2d
(kernel_size,
stride=None,
padding=0,
dilation=1,
return_indices=False,
ceil_mode=False)
关键参数说明:
kernel_size:最大的窗口大小
stride:窗口的步幅,默认值为kernel_size
padding:填充值,默认为0
dilation:控制窗口中元素步幅的参数

我们定义一个名为"Network_bn"的神经网络模型,继承自nn.Module类。该模型包括多个卷积层和批标准化层以及全连接层,最终输出分类的预测值。在这个模型中,激活函数使用了ReLU函数。同时,还定义了一个forward()函数来定义数据如何通过该神经网络进行前向传播。最后,将该模型移动到GPU上进行运算,并打印出使用的设备(CPU或GPU)。最后一行代码返回创建的模型。

import torch.nn.functional as F

class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        """
        nn.Conv2d()函数:
        第一个参数(in_channels)是输入的channel数量
        第二个参数(out_channels)是输出的channel数量
        第三个参数(kernel_size)是卷积核大小
        第四个参数(stride)是步长,默认为1
        第五个参数(padding)是填充大小,默认为0
        """
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.fc1 = nn.Linear(24*50*50, len(classeNames))

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))      
        x = F.relu(self.bn2(self.conv2(x)))     
        x = self.pool(x)                        
        x = F.relu(self.bn4(self.conv4(x)))     
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool(x)                        
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Network_bn().to(device)
model

 

三、 训练模型

1. 设置超参数
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate)

nn.CrossEntropyLoss()是交叉熵损失函数,用于计算模型输出和目标值之间的差异。在分类问题中,交叉熵损失函数常常被使用。

learn_rate = 1e-4定义了学习率,用于控制模型参数更新的速度。学习率越大,模型参数更新的幅度就越大,训练速度也会加快。但是,如果学习率过大,模型可能会发散,导致训练失败。

opt = torch.optim.SGD(model.parameters(),lr=learn_rate)定义了优化器,这里使用了随机梯度下降(SGD)优化器。优化器的作用是根据损失函数的梯度信息来更新模型参数,使得模型能够更好地拟合训练数据。model.parameters()表示需要更新的参数集合,lr=learn_rate表示学习率为learn_rate。

2. 编写训练函数

optimizer.zero_grad()
函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。
loss.backward()
PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。
具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。
更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。
如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。
optimizer.step()
step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。
注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

 

在上面函数中:

size变量存储训练数据集的大小,这里是60000张图片。
num_batches变量存储批处理数据的数量,即将整个数据集分成的批次数量,这里是1875个(每个批次的大小为32)。
train_loss和train_acc变量分别用于记录训练损失和正确率,它们的初始值为0。
循环遍历数据加载器dataloader,在每一次循环中,将图像和标签数据加载到设备中(如果GPU可用)。
pred变量包含通过模型处理后的输出结果,loss变量包含通过计算pred与真实标签值y之间差异得到的损失值。
optimizer.zero_grad()调用将梯度属性清零。
loss.backward()根据损失反向传播,计算梯度值。
optimizer.step()在每次循环迭代中自动更新模型参数。
train_acc变量记录每个批次中正确分类的数量。train_loss变量存储每个批次中的损失值。
计算训练集的平均正确率和平均损失,并将其返回作为训练循环的输出。

3. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4. 正式训练

model.train()
model.train()的作用是启用 Batch Normalization 和 Dropout。
如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()。model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropout,model.train()是随机取一部分网络连接来训练更新参数。
model.eval()
model.eval()的作用是不启用 Batch Normalization 和 Dropout。
如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()。model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropout,model.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。
训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

# 设置训练的轮数为30次
epochs = 30
# 初始化存储训练集正确率、训练损失、测试集正确率、测试集损失的列表
train_loss = []
train_acc = []
test_loss = []
test_acc = []

# 开始训练循环
for epoch in range(epochs):
    # 训练模式下进行训练
    model.train()
    # 计算当前轮的训练集正确率和训练损失
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)

    # 测试模式下进行测试
    model.eval()
    # 计算当前轮的测试集正确率和测试损失
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    # 将当前轮的正确率和损失添加到对应的列表中
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 打印当前轮的正确率和损失
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
saveFile = os.path.join('epoch'+str(epochs)+'.pkl')
torch.save(model.state_dict(), saveFile)

 

 

四、结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

 

  • 22
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值