深度学习训练营第P1周:Pytorch实现mnist手写数字识别

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

一、创建环境

我们先使用conda创建一个虚拟python环境,并激活:

conda create -n dlpytorch
conda activate dlpytorch

 我的电脑是Windows平台下的nvida GPU,接下来配置pytorch,分为两步:

首先确认自己的显卡和cuda版本;在终端输入nvidia-smi查看

nvidia-smi

 我的cuda版本是12.3

 第二步安装pytorch:打开pytorch安装指导网站,选择合适的系统平台,关键是在compute platform选择一个不高于你电脑上的CUDA Version,复制命令安装。

安装完成之后进入jupyternotebook,运行如下命令检查:

import torch
# 打印出正在使用的PyTorch和CUDA版本。
print(torch.__version__)
print(torch.version.cuda)

# 测试GPU是否生效
print(torch.cuda.is_available())

二、前期准备

2.1 设置GPU

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

# 设置硬件设备,如果有GPU则使用,没有则使用cpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

 结果输出为cuda,表示使用的是GPU

2.2 导入数据

2.2.1 下载数据并划分训练集和测试集
# 使用dataset下载MNIST数据集,并划分好训练集与测试集
train_ds = torchvision.datasets.MNIST('data', 
                                      train=True, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

test_ds  = torchvision.datasets.MNIST('data', 
                                      train=False, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)
# 设置好基本的batch_size,也就是批次的大小
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds, 
                                       batch_size=batch_size, 
                                       shuffle=True)

test_dl  = torch.utils.data.DataLoader(test_ds, 
                                       batch_size=batch_size)

⭐ torchvision.datasets.MNIST详解:

torchvision.datasets是Pytorch自带的一个数据库,我们可以通过代码在线下载数据,这里使用的是torchvision.datasets中的MNIST数据集。
函数原型:
torchvision.datasets.MNIST(root, train=True, transform=None, target_transform=None, download=False)
参数说明:
● root (string) :数据地址
● train (string) :True-训练集,False-测试集
● download (bool,optional) : 如果为True,从互联网上下载数据集,并把数据集放在root目录下。
● transform (callable, optional ):这里的参数选择一个你想要的数据转化函数,直接完成数据转化
● target_transform (callable,optional) :接受目标并对其进行转换的函数/转换。
⭐ torch.utils.data.DataLoader详解

torch.utils.data.DataLoader是Pytorch自带的一个数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。
函数原型:
torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=None, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None, generator=None, *, prefetch_factor=2, persistent_workers=False, pin_memory_device=‘’)
参数说明:
● dataset (string) :加载的数据集
● batch_size (int,optional) :每批加载的样本大小(默认值:1)
● shuffle (bool,optional) : 如果为True,每个epoch重新排列数据。


2.2.2 查看数据

# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
imgs.shape

  

train_dl:train_dl 是一个 PyTorch 数据加载器(DataLoader),用于加载训练数据集。通常情况下,数据加载器会将数据集分成小批量(batches)进行处理。
iter(train_dl):这个调用将train_dl转换为一个迭代器。在Python中,iter()函数用于从可迭代对象获取一个迭代器。在这里,train_dl是一个可迭代对象,因此iter(train_dl)将返回一个迭代器,可以用来遍历数据加载器中的批次数据。
next(iter(train_dl)):这个调用从train_dl迭代器中获取下一个元素。在PyTorch的DataLoader中,每个元素都是一个元组,通常包含数据和标签。数据(imgs)和标签(labels)是构成训练数据集的图像和对应的类别标签。
imgs, labels = …:这是一个元组解包操作,它将next(iter(train_dl))返回的元组中的两个元素分别赋值给imgs和labels变量。这样,imgs变量将包含一个批次的图像数据,而labels变量将包含与这些图像相对应的标签。
2.3数据可视化

# 数据可视化
import numpy as np

# 指定图片大小,图像大小为30宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(30, 5))
for i, imgs in enumerate(imgs[:30]):
    # 维度缩减
    npimg = np.squeeze(imgs.numpy())
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(3, 10, i + 1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')

plt.show()

三、构建简单的CNN网络(卷积神经网络)

代码参照为以下网络结构:

这段代码定义了一个简单的卷积神经网络模型,用于图像分类任务。这个模型是一个PyTorch中的nn.Module子类,它包含了特征提取网络分类网络两个部分。

import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)  # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(2)                  # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(2) 
                                      
        # 分类网络
        self.fc1 = nn.Linear(1600, 64)          
        self.fc2 = nn.Linear(64, num_classes)
     # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     
        x = self.pool2(F.relu(self.conv2(x)))

        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)
       
        return x
        
# 加载并打印模型
from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)

summary(model)

特征提取网络

self.conv1 = nn.Conv2d(1, 32, kernel_size=3): 这是第一层卷积层,它接受一个通道(例如灰度图像)的输入,并输出32个通道。卷积核的大小是3x3,这意味着每个卷积核在输入图像上滑动时,查看的是一个3x3的区域。
self.pool1 = nn.MaxPool2d(2): 这是一个最大池化层,它的池化核大小是2x2。池化操作会减少数据的维度,同时保留最重要的特征。
self.conv2 = nn.Conv2d(32, 64, kernel_size=3): 这是第二层卷积层,它接受32个通道的输入(来自第一层卷积层的输出),并输出64个通道。
self.pool2 = nn.MaxPool2d(2): 第二个最大池化层,同样使用2x2的池化核。
分类网络

self.fc1 = nn.Linear(1600, 64): 这是一个全连接层,它接受1600个输入(这是之前卷积和池化操作后的特征数量),并输出64个节点。
self.fc2 = nn.Linear(64, num_classes): 第二个全连接层,它接受64个输入,并输出最终的分类结果。
def forward(self, x): 这个方法定义了数据通过网络的前向传播过程。

x = self.pool1(F.relu(self.conv1(x))): 输入数据首先通过第一层卷积层,然后通过ReLU激活函数(用于引入非线性),最后通过第一个池化层。
x = self.pool2(F.relu(self.conv2(x))): 数据接着通过第二层卷积层、ReLU激活函数和第二个池化层。
x = torch.flatten(x, start_dim=1): 这一步将多维度的特征张量展平成一个一维的张量,这样就可以输入到全连接层中。
x = F.relu(self.fc1(x)): 数据通过第一个全连接层和ReLU激活函数。
x = self.fc2(x): 最后,数据通过第二个全连接层,输出最终的分类结果。

结果如图:

Layer (type:depth-idx): 这一行标题表示模型的层类型和位置。type表示层的类型,如Conv2d表示二维卷积层,MaxPool2d表示二维最大池化层,Linear表示全连接层。depth-idx表示层在模型中的深度和索引位置。
Param #: 这一行标题表示该层的参数数量。对于卷积层和全连接层,参数数量包括权重和偏置。对于没有参数的层(如池化层),这一列会显示–。
例如:
● Conv2d: 1-1: 第一层卷积层,有320个参数。
● MaxPool2d: 1-2: 第一层最大池化层,没有参数。
● Conv2d: 1-3: 第二层卷积层,有18,496个参数。
● MaxPool2d: 1-4: 第二层最大池化层,没有参数。
● Linear: 1-5: 第一层全连接层,有102,464个参数。
● Linear: 1-6: 第二层全连接层,有650个参数。
最后一部分总结了整个模型的参数数量:
● Total params: 121,930: 模型的总参数数量,这是所有可训练参数的总和。
● Trainable params: 121,930: 模型中可训练的参数数量,即可以在训练过程中通过梯度下降更新的参数。
● Non-trainable params: 0: 模型中不可训练的参数数量,这些参数在训练过程中保持不变。在这个模型中没有不可训练的参数。

四、训练模型

4.1 设置超参数

# 设置超参数
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

loss_fn = nn.CrossEntropyLoss(): 这行代码创建了一个交叉熵损失函数。在分类问题中,特别是多分类问题,交叉熵损失函数是常用的损失函数之一。它衡量的是模型输出的概率分布与真实标签的分布之间的差异。在PyTorch中,nn.CrossEntropyLoss()函数已经集成了对输入进行softmax运算和计算交叉熵损失的功能,因此模型输出层不需要额外的softmax函数。
learn_rate = 1e-2: 这行代码定义了学习率,其值为0.01(即1乘以10的-2次方)。学习率决定了在优化过程中参数更新的幅度。选择合适的学习率非常重要,因为学习率过大可能导致训练不稳定,而学习率过小则可能导致训练过程过慢。
opt = torch.optim.SGD(model.parameters(), lr=learn_rate): 这行代码创建了一个随机梯度下降(Stochastic Gradient Descent, SGD)优化器的实例。model.parameters()获取了模型中所有可训练参数的迭代器,lr=learn_rate指定了学习率。SGD是一种常用的优化算法,它通过迭代地更新参数来最小化损失函数。在每次迭代中,SGD使用小批量数据(mini-batches)计算损失函数的梯度,并沿着梯度的反方向更新参数。
4.2 编写训练函数
通过遍历训练数据集的所有批量,计算每个批量的损失和准确率,并更新模型参数。最后返回整个训练过程的平均损失和平均准确率。
这段代码定义了一个训练函数train,用于训练神经网络模型。这个函数接受四个参数:dataloader、model、loss_fn和optimizer。

dataloader: 这是一个PyTorch的DataLoader对象,它提供了批量数据以及相关的标签,用于训练模型。
model: 这是需要训练的神经网络模型。
loss_fn: 这是损失函数,用于计算模型预测值和真实值之间的差异。
optimizer: 这是优化器,用于更新模型的参数以最小化损失函数。

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)  # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率

    for X, y in dataloader:  # 循环遍历dataloader中的每个批量,每个批量包含一批图片X和对应的标签y。
        X, y = X.to(device), y.to(device)

        # 计算预测误差
        pred = model(X)  # 通过模型对当前批量的图片进行预测
        loss = loss_fn(pred, y)  # 计算预测结果pred和真实标签y之间的损失

        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()  # 反向传播,计算损失关于模型参数的梯度
        optimizer.step()  # 每一步自动更新,根据计算出的梯度更新模型的参数

        # 记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item() #更新训练准确率。pred.argmax(1)返回每个预测向量的最大值索引,即最可能的类别。然后比较预测的类别和真实的类别y,计算正确预测的图片数量。
        train_loss += loss.item() #累加当前批量的损失

    train_acc /= size # 计算平均训练准确率,通过将累加的正确预测数量除以训练集的总大小.
    train_loss /= num_batches #计算平均训练损失,通过将累加的损失除以批次数目。

    return train_acc, train_loss #函数返回平均训练准确率和平均训练损失

4.3 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器。

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)  # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc /= size
    test_loss /= num_batches

    return test_acc, test_loss

4.4 开始训练

在每次epoch中,模型首先被设置为训练模式,然后使用训练数据集进行训练;训练完成后,模型被设置为评估模式,然后使用测试数据集进行评估。

epochs = 5 # 定义了训练循环的次数,即进行了5次epoch
train_loss = []
train_acc = []
test_loss = []
test_acc = []

for epoch in range(epochs):
    # 训练模式
    model.train() #启用训练模式,在该模式下,模型会启用所有可训练的层,并禁用BN(Batch Normalization)层在测试时的行为。
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt) #train函数计算并返回当前epoch的训练准确率和训练损失

    # 评估模式
    model.eval() #在评估模式下,模型会禁用所有可训练的层,并启用BN层在测试时的行为。
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn) #test函数计算并返回当前epoch的测试准确率和测试损失

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
print('Done')

整个代码的原理是通过循环重复训练和评估过程,使用训练数据集训练模型,并使用测试数据集评估模型的性能。在每个epoch中,模型会根据损失函数的梯度更新其参数,以最小化训练损失。训练完成后,模型会根据测试数据集的损失评估其性能,以便了解模型在未知数据上的表现。

4.5 结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

结果如下:

五、总结

这个项目使我初步了解了pytorch的使用,和初步应用了cnn进行图片分类,初步了解了cnn的原理。

  • 22
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: PyTorch是一种深度学习框架,可以用来实现MNIST数字识别MNIST是一个常用的数据集,包含了大量数字的图像和对应的标签。我们可以使用PyTorch来构建一个卷积神经网络模型,对这些图像进行分类,从而实现数字识别的功能。具体实现过程可以参考PyTorch官方文档或相关教程。 ### 回答2: MNIST是一个经典的数字识别问题,其数据集包括60,000个训练样本和10,000个测试样本。PyTorch作为深度学习领域的热门工具,也可以用来实现MNIST数字识别。 第一步是加载MNIST数据集,可以使用PyTorch的torchvision.datasets模块实现。需要注意的是,MNIST数据集是灰度图像,需要将其转换为标准的三通道RGB图像。 ```python import torch import torchvision import torchvision.transforms as transforms # 加载数据集 train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]), download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]), download=True) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) ``` 第二步是构建模型。在MNIST数字识别问题中,可以选择使用卷积神经网络(CNN),其可以捕获图像中的局部特征,这对于数字识别非常有用。 ```python import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3) self.conv2 = nn.Conv2d(32, 64, kernel_size=3) self.dropout1 = nn.Dropout2d(0.25) self.dropout2 = nn.Dropout2d(0.5) self.fc1 = nn.Linear(64*12*12, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, kernel_size=2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output model = Net() ``` 第三步是定义优化器和损失函数,并进行训练和测试。在PyTorch中,可以选择使用交叉熵损失函数和随机梯度下降(SGD)优化器进行训练。 ```python import torch.optim as optim # 定义优化器和损失函数 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 训练模型 for epoch in range(10): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) ``` 最后,可以输出测试集上的准确率。对于这个模型,可以得到大约98%的准确率,具有很好的性能。 ### 回答3: PyTorch是一个常用的深度学习框架,通过PyTorch可以方便地实现mnist数字识别mnist数字数据集是机器学习领域的一个经典数据集,用于训练和测试数字识别算法模型。以下是PyTorch实现mnist数字识别的步骤: 1. 获取mnist数据集:可以通过PyTorch提供的工具包torchvision来获取mnist数据集。 2. 数据预处理:将数据集中的数字图片转换为张量,然后进行标准化处理,使得每个像素值都在0到1之间。 3. 构建模型:可以使用PyTorch提供的nn模块构建模型,常用的模型包括卷积神经网络(CNN)和全连接神经网络(FNN)。例如,可以使用nn.Sequential()函数将多个层逐一堆叠起来,形成一个模型。 4. 训练模型:通过定义损失函数和优化器,使用训练数据集对模型进行训练。常用的损失函数包括交叉熵损失函数和均方误差损失函数,常用的优化器包括随机梯度下降(SGD)和Adam。 5. 测试模型:通过测试数据集对模型进行测试,可以用测试准确率来评估模型的性能。 以下是一个简单的PyTorch实现mnist数字识别的代码: ``` python import torch import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.transforms as transforms # 获取数据集 train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # 数据加载器 train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False) # 构建模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=5) self.conv2 = nn.Conv2d(32, 64, kernel_size=5) self.fc1 = nn.Linear(1024, 256) self.fc2 = nn.Linear(256, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = x.view(-1, 1024) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) model = Net() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 转换为模型所需格式 images = images.float() labels = labels.long() # 前向传播和计算损失 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和更新参数 optimizer.zero_grad() loss.backward() optimizer.step() # 每100个批次输出一次日志 if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_dataset)//100, loss.item())) # 测试模型 correct = 0 total = 0 with torch.no_grad(): # 不需要计算梯度 for images, labels in test_loader: # 转换为模型所需格式 images = images.float() labels = labels.long() # 前向传播 outputs = model(images) _, predicted = torch.max(outputs.data, 1) # 统计预测正确数和总数 total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy: {:.2f}%'.format(100 * correct / total)) ``` 以上就是一个基于PyTorchmnist数字识别的简单实现方法。需要注意的是,模型的设计和训练过程可能会受到多种因素的影响,例如网络结构、参数初始化、优化器等,需要根据实际情况进行调整和优化,才能达到更好的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值