向量范数的个人理解

一、范数的概念

        定义:假设V是一向量空间,向量\mathbf{x}的范数是一实函数p(\mathbf{x}):V\rightarrow \mathbb{R},若对所有向量\mathbf{x}, \mathbf{y}\inV和任意一个标量c \in \mathbb{K}(其中\mathbb{K}表示实数集\mathbb{R}或者复数集\mathbb{C}),下面的公理全部成立:

        1. 非负性:p(\mathbf{x})\geqslant 0,并且p(\mathbf{x})=0\Leftrightarrow \mathbf{x}=\mathbf{0}

        2. 齐次性:p(c\mathbf{x})=|c|\cdot p(\mathbf{x})对所有复常数c都成立;

        3.三角不等式:p(\mathbf{x+y})\leqslant p(\mathbf{x})+p(\mathbf{y})

       个人的附加理解:范数是向量空间中一个向量到实数空间中一个实数的映射,而这个映射就是求得一个向量的长度。

       范数与距离的关系:范数也可以认为是一种距离,即向量到零向量的距离。

二、常用的五种范数

        在常见的五种范数中,L_{2}范数是经常用到的,它通常也被成为欧式范数。当p等于2时,L_{p}范数与L_{2}范数完全等价。另外,L_{1}范数和L_{2}范数都是满足非负性、齐次性和三角不等式这三个公理的,你可以通过自己的计算来证明。L_{0}范数不满足齐次性公理,可以举出一个反例证明其不成立。L_{\infty}范数则是L_{p}范数的极限形式。

三、L_{1}L_{2}范数的三角不等式公理证明思路

        在满足范数的三条公理中,其中前两条都是比较好证明的,但第三条即三角不等式的证明还需要借助巨人的肩膀。

        先说L_{1}范数吧,这个的话其实就是证明不等式|a+b|\leqslant |a|+|b|即可,然后推广。而这个不等式的证明很简单,如下:

(1)    -|a|\leqslant a\leqslant |a|

(2)    -|b|\leqslant b\leqslant |b|

        由(1)+(2)得到,-|a|-|b|\leqslant a+b \leqslant |a| + |b|,即,-(|a|+|b|)\leqslant a+b \leqslant |a| + |b|,显然|a+b|\leqslant |a|+|b|

        而L_{2}范数你需要借助柯西不等式,如下图所示。在此博客已经证明得非常清楚。

四、结束语

        以上均是我的个人总结和理解,如有遗漏或出错,欢迎提出留言批评改正。

参考资料

1. 张贤达,《矩阵分析与应用》第2版。

2. 百度百科,绝对值不等式

  • 3
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞机火车巴雷特

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值