acm--最小公倍数(HDU 1108)

HDU 1108 最小公倍数(Gcd 数论)

#include<stdio.h>
int Gcd(int a, int b){
  return b == 0? a: Gcd(b, a%b);
}
int main(){
    int x,y;
    while(scanf("%d%d",&x,&y)!=EOF) printf("%d\n",x*y/Gcd(x,y));
} 

也可以

int gcd(int a, int b)
{
    int temp;
    if (a<b)
    {
        temp = a;
        a = b;
        b = temp;
    }
    if (a % b== 0)
    {
        return b;
     }
     else
     {
        return gcd ( b,a % b) ;
     }
}

辗转相除法的证明–出自欧几里得的《几何原本》

  设两数为a、b(b<a),求它们最大公约数的步骤如下:用b除a,得a=bq+r(0≤r<b)(q是这个除法的商)。若r=0,则b是a和b的最大公约数。若r≠0,则继续考虑。
  首先,应该明白的一点是任何 a 和 b 的公约数都是 r 的公约数。要想证明这一点,就要考虑把 r 写成 r=a-bq。现在,如果 a 和 b 有一个公约数 d,而且设 a=sd , b=td, 那么 r = sd-tdq = (s-tq)d。因为这个式子中,所有的数(包括 s-tq )都为整数,所以 r 可以被 d 整除。
  对于所有的 d 的值,这都是正确的;所以 a 和 b 的最大公约数也是 b 和 r 的最大公约数。因此我们可以继续对 b 和 r 进行上述取余的运算。这个过程在有限的重复后,可以最终得到 r=0 的结果,我们也就得到了 a 和 b 的最大公约数。
  
如果你会了,还可以试一下这题
又见gcd

看看你想得出这一题吗,很水呦
分cake

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值