强化学习如何调整参数

如何调整参数
深度强化学习之DQN编写与调试经验总结

神经网络的选取

这里着重强调一下,我们用神经网络的目的是为了拟合值函数(动作-状态值函数)。

那么我们应该使用什么样的网络呢?当你在网上搜索DQN代码时,主要有以下几个版本的复制:基于gym中倒立摆与过山车的DQN,用的为一个隐藏层的全连接;基于原始图像输入如Atari中的游戏,用的为深度卷积神经网络。因此,当你把DQN应用到具体的应用时,首先考虑一下是不是真的需要使用深度卷积神经网络。当你的特征可以直接提取并可以根据得到的特征计算值函数时,就不需要使用卷积神经网络,只有当你的Agent输入为原始图像,需要提取图像特征时再考虑使用卷积神经网络。

如果你要问神经元的数量以及层数,大致的思路是层数越深,每层神经元数据可以相应减少;层数越浅,每层神经元数量就稍微增多一点。

激活函数这里要注意一下,如果你的环境奖励为负值,那么要注意:Relu可能会使你的神经元不激活,从而导致反向传播无法更新大量的参数。Relu的变种或者Sigmoid变种(tanh)等都可以考虑,但是sigmoid在一定区域也会出于无梯度状态。
————————————————
版权声明:本文为CSDN博主「MADong0」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/guijian6473/article/details/93859663

参数模型和非参数模型

添加链接描述

机器学习中的数据分布密度估计之采样法

添加链接描述
寻找数据集的分布参数或其后验概率的途径有两个,一是采样法,另一个是使用类似最大似然法的优化法,获得近似解

Survival_Analysis

Rainbow算法是一种基于强化学习的深度学习算法,其基于深度Q网络(DQN)并添加了多项改进,包括双重Q学习、优先经验回放、分布式Q学习等。在分布式Rainbow算法中,需要对参数进行调整以优化算法的性能。 以下是一些可能的参数调整: 1. 学习率:学习率控制了权重更新的速度。较小的学习率会使权重更新变慢,但有助于避免过拟合。较大的学习率会使权重更新变快,但可能会导致过拟合。可以通过调整学习率来平衡性能和稳定性。 2. 批大小:批大小指每次训练时使用的样本数量。较小的批大小可能会导致不稳定的训练,而较大的批大小可能会导致过拟合。可以通过调整批大小来平衡性能和稳定性。 3. 目标网络更新频率:目标网络是用于计算Q值目标的网络。目标网络的更新频率控制了目标Q值的更新速度。较高的更新频率可以提高算法的性能,但需要更多的计算资源。较低的更新频率可以提高稳定性,但可能会导致性能下降。 4. 奖励衰减率:奖励衰减率用于控制未来奖励的重要性。较高的衰减率会使未来奖励的重要性更高,但可能会导致过度关注未来奖励。较低的衰减率会使未来奖励的重要性更低,但可能会导致性能下降。 5. ε-贪心策略参数:ε-贪心策略用于探索未知状态。较高的ε会使算法更注重探索,但可能会导致性能下降。较低的ε会使算法更注重利用,但可能会导致局部最优解。 6. 神经网络结构:神经网络结构包括层数、神经元数量等。较深的网络可能会提高算法的性能,但需要更多的计算资源。较浅的网络可能会提高稳定性,但可能会导致性能下降。 以上是一些可能的参数调整,但实际上还有很多其他参数可以调整。在进行参数调整时,需要平衡性能和稳定性,并根据实际应用场景和计算资源进行优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值