【基于机器学习的垃圾短信过滤识别系统】

本文介绍了一种基于机器学习的垃圾短信过滤识别系统,利用决策树和SVM算法进行分类,通过Django构建后端,MySQL存储数据。系统提供用户登录、短信展示、垃圾短信判断和分析可视化等功能,有效解决垃圾短信问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于机器学习的垃圾短信过滤识别系统


在这里插入图片描述

引言

随着移动通讯技术的快速发展,垃圾短信已成为困扰许多用户的问题。为了有效过滤和识别这些不必要的信息,我们开发了一款基于机器学习的垃圾短信过滤识别系统。

演示-基于机器学习的垃圾短信过滤识别系统

数据集

我们的系统使用了从互联网公开渠道获取的大量短信数据集。这些数据集包括各种类型的短信,既有普通短信,也有大量已标记的垃圾短信,为我们的机器学习模型提供了丰富的训练材料。

技术栈

  • 决策树和SVM算法:用于建立垃圾短信的识别和分类模型。
  • Django:用于搭建系统的后端服务。
  • MySQL:用于存储用户信息、短信数据等。

主要功能

  1. 用户登录注册:用户可以创建账户并登录系统。
  2. 短信展示:展示用户短信,包括普通短信和垃圾短信。
  3. 垃圾短信判断:系统自动分析短信内容,判断是否为垃圾短信。
  4. 短信分析可视化:通过图表等形式展示短信分析结果,增加用户体验。
  5. 数据集管理:管理员可以管理和更新短信数据集。

系统实现

系统基于机器学习算法,主要利用决策树和支持向量机(SVM)算法对短信进行分类。这些算法能够学习短信中的特定模式,有效区分垃圾短信和普通短信。

Django框架被用于搭建后端服务,提供用户界面和与数据库的交互功能。MySQL数据库用于存储用户信息、短信内容和系统分析结果。

结论

基于机器学习的垃圾短信过滤识别系统提供了一种有效的解决方案,帮助用户减少垃圾短信的干扰。通过不断学习和适应新的垃圾短信模式,系统能够提供更准确的过滤效果。

私聊我吧:https://mbd.pub/o/aiyu/work

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OverlordDuke

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值