[适合新手的NLP项目]基于机器学习的垃圾信息识别分类

1.项目背景

电子邮件和短信中的垃圾信息是现代通信中常见的问题之一。随着互联网的普及和移动设备的广泛使用,垃圾信息的传播途径和数量也在迅速增加,这些垃圾信息不仅影响用户的日常通信体验,还可能带来严重的安全威胁,如钓鱼攻击、恶意软件传播以及个人隐私泄露等。因此,准确分类这些信息为垃圾邮件或非垃圾邮件,成为了提升用户体验和保障信息安全的关键。
本项目旨在通过文本分析和机器学习模型对垃圾邮件进行有效检测,验证了机器学习模型在垃圾信息分类中的有效性和可靠性,为构建更加智能和高效的垃圾过滤系统提供了数据支持和技术参考。

2.数据说明

字段名 说明
message_content 邮件或短信的正文内容
is_spam 标签,指示该消息是否为垃圾信息(1表示垃圾邮件,0表示非垃圾邮件)

3.Python库导入及数据读取

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from wordcloud import WordCloud
from collections import Counter
from textblob import TextBlob
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.decomposition import LatentDirichletAllocation
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值