1.项目背景
电子邮件和短信中的垃圾信息是现代通信中常见的问题之一。随着互联网的普及和移动设备的广泛使用,垃圾信息的传播途径和数量也在迅速增加,这些垃圾信息不仅影响用户的日常通信体验,还可能带来严重的安全威胁,如钓鱼攻击、恶意软件传播以及个人隐私泄露等。因此,准确分类这些信息为垃圾邮件或非垃圾邮件,成为了提升用户体验和保障信息安全的关键。
本项目旨在通过文本分析和机器学习模型对垃圾邮件进行有效检测,验证了机器学习模型在垃圾信息分类中的有效性和可靠性,为构建更加智能和高效的垃圾过滤系统提供了数据支持和技术参考。
2.数据说明
字段名 | 说明 |
---|---|
message_content | 邮件或短信的正文内容 |
is_spam | 标签,指示该消息是否为垃圾信息(1表示垃圾邮件,0表示非垃圾邮件) |
3.Python库导入及数据读取
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from wordcloud import WordCloud
from collections import Counter
from textblob import TextBlob
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.decomposition import LatentDirichletAllocation
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB