“智能语音指令解析“ 基于NLP与语音识别的工单关键信息提取
本文将介绍如何利用 PaddleSpeech 的语音识别技术与 PaddleNLP 的通用信息抽取技术,实现基于智能语音指令解析的关键工单信息提取。我们将通过语音交互的方式,在交通报销场景下实现智能信息抽取,以提高工作效率与质量。
1. 背景介绍
智能语音指令解析集成了语音识别(ASR)与信息抽取(IE)等技术,广泛应用于智能语音填单、语音交互、手机APP语音唤醒等场景,提高人机交互效率。其中,智能语音填单可通过口述记录信息,并利用算法解析口述内容中的关键信息,完成自动信息录入。
1.1 场景痛点
- 电话分析:边询问边记录,容易遗漏关键信息,例如社区疫情防控信息记录。
- 工单生成:特定场景下无法完成文字录入,如电力路线巡检工作人员在高空巡检高压电线路。
- 信息登记:重复性工作效率低易出错,例如汽车售后客服话务员每天接听大量电话。
针对以上场景,利用PaddleSpeech的语音识别技术和PaddleNLP的信息抽取技术,可以自动识别和抽取语音中的关键信息,帮助简化记录流程,提高工作效率和质量。
1.2 方案选型
- PaddleSpeech语音识别模型:包含多种领先国际水平的语音算法与预训练模型,提供简单易用的语音识别功能。
- PaddleNLP通用信息抽取模型(UIE):支持实体识别、关系和事件抽取、情感分析等多种信息抽取任务,具有良好的泛化效果。
2. 准备开发环境
安装PaddleSpeech与PaddleNLP:
!pip install paddlespeech
!pip install paddlenlp
下载必要数据包与示例音频,并进行初始化设置。
3. PaddleSpeech 语音识别快速使用
通过PaddleSpeech调用语音识别方法简单易行: