“智能语音指令解析“ 基于NLP与语音识别的工单关键信息提取

本文介绍了如何通过集成PaddleSpeech的语音识别技术和PaddleNLP的信息抽取功能,实现在语音指令下自动提取工单关键信息,尤其在电话分析、工单生成和信息登记等场景中提高效率和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本文将介绍如何利用 PaddleSpeech 的语音识别技术与 PaddleNLP 的通用信息抽取技术,实现基于智能语音指令解析的关键工单信息提取。我们将通过语音交互的方式,在交通报销场景下实现智能信息抽取,以提高工作效率与质量。

1. 背景介绍

智能语音指令解析集成了语音识别(ASR)与信息抽取(IE)等技术,广泛应用于智能语音填单、语音交互、手机APP语音唤醒等场景,提高人机交互效率。其中,智能语音填单可通过口述记录信息,并利用算法解析口述内容中的关键信息,完成自动信息录入。

1.1 场景痛点

  • 电话分析:边询问边记录,容易遗漏关键信息,例如社区疫情防控信息记录。
  • 工单生成:特定场景下无法完成文字录入,如电力路线巡检工作人员在高空巡检高压电线路。
  • 信息登记:重复性工作效率低易出错,例如汽车售后客服话务员每天接听大量电话。

针对以上场景,利用PaddleSpeech的语音识别技术和PaddleNLP的信息抽取技术,可以自动识别和抽取语音中的关键信息,帮助简化记录流程,提高工作效率和质量。

1.2 方案选型

  • PaddleSpeech语音识别模型:包含多种领先国际水平的语音算法与预训练模型,提供简单易用的语音识别功能。
  • PaddleNLP通用信息抽取模型(UIE):支持实体识别、关系和事件抽取、情感分析等多种信息抽取任务,具有良好的泛化效果。

2. 准备开发环境

安装PaddleSpeech与PaddleNLP:

!pip install paddlespeech
!pip install paddlenlp

下载必要数据包与示例音频,并进行初始化设置。

3. PaddleSpeech 语音识别快速使用

通过PaddleSpeech调用语音识别方法简单易行:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OverlordDuke

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值