最大子序列和的问题

一,问题描述

给定(可能有负数)n个整数,求该序列连续子序列的最大值。为方便起见,若所有的整数为负数,则最大子序列和为0.

也就是:在一系列整数中,找出连续的若干个整数,这若干个整数之和 最大。

二,解法

解法1:

#include<iostream>
using namespace std;
void max(int *a,int n);
int main(){
  int N;
  int num[100];
  cin >> N;
  for(int i = 0;i < N;i++){
    cin >> num[i];
  }

  max(num,N);

  return 0;
}
void max(int *a,int n){
  int  maxsum = 0;

  for(int i=0;i<n;i++){
    for(int j= i;j<n;j++){
      int  sum = 0;

      for(int k = i;k<=j;k++){
        sum  += a[k];
      }

      if(sum>maxsum){
        maxsum = sum;
      }
    }
  }
  cout<<maxsum;
}

解法2:

直接把上面的max函数替换为下面的即可

void max(int *a,int n){
    int maxsum = 0;
    int thissum = 0;
    for(int i = 0;i<n;i++){
        thissum += a[i];
        if(thissum>maxsum)
            maxsum = thissum;
        else if(thissum <= 0) {
            thissum =  0;
        }
    }
    cout<<maxsum;
}

两种做法得出的结果都是正确的,但是第一种的时间复杂度可以看得出是O(N^3),第二种是O(N),第一种的容易想到,就是把所有的做法都尝试一遍比较出最大的一个,而第二种是一旦序列和为负值或0直接抛弃,因为加上一个非正数最后的序列和肯定不是最大的那一个。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值