一,问题描述
给定(可能有负数)n个整数,求该序列连续子序列的最大值。为方便起见,若所有的整数为负数,则最大子序列和为0.
也就是:在一系列整数中,找出连续的若干个整数,这若干个整数之和 最大。
二,解法
解法1:
#include<iostream>
using namespace std;
void max(int *a,int n);
int main(){
int N;
int num[100];
cin >> N;
for(int i = 0;i < N;i++){
cin >> num[i];
}
max(num,N);
return 0;
}
void max(int *a,int n){
int maxsum = 0;
for(int i=0;i<n;i++){
for(int j= i;j<n;j++){
int sum = 0;
for(int k = i;k<=j;k++){
sum += a[k];
}
if(sum>maxsum){
maxsum = sum;
}
}
}
cout<<maxsum;
}
解法2:
直接把上面的max函数替换为下面的即可
void max(int *a,int n){
int maxsum = 0;
int thissum = 0;
for(int i = 0;i<n;i++){
thissum += a[i];
if(thissum>maxsum)
maxsum = thissum;
else if(thissum <= 0) {
thissum = 0;
}
}
cout<<maxsum;
}
两种做法得出的结果都是正确的,但是第一种的时间复杂度可以看得出是O(N^3),第二种是O(N),第一种的容易想到,就是把所有的做法都尝试一遍比较出最大的一个,而第二种是一旦序列和为负值或0直接抛弃,因为加上一个非正数最后的序列和肯定不是最大的那一个。