求逆元的方法

定理3.1.1设m是一个正整数,a是满足m不能整除a的整数,则一次同余式有解的充分必要条件是(am=1,而且,当同余式有解时,其解是唯一的。

1)扩展欧几里得算法:

整数a,b互素的充分必要条件是存在整数s和t,使得sa+tb=1.

对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数(最大公因数),必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。同余方程ax≡b (mod n),如果 gcd(a,n)== 1,则方程只有唯一解。

在这种情况下,如果 b== 1,同余方程就是 ax=1 (mod n ),gcd(a,n)= 1。 这时称求出的 x 为 a 的对模 n 乘法的逆元。

对于同余方程 ax= 1(mod n ), gcd(a,n)= 1 的求解就是求解方程 ax+ ny= 1,x, y 为整数。这个可用扩展欧几里德算法求出,原同余方程的唯一解就是用扩展欧几里德算法得出的 x 。

    1. 费马小定理求逆元:

设p是一个素数,则对任意整数a,有a^p 同余 a(mod) p。

故a^(p-1) 同余 1(mod) p

故a的逆元为a^(p-2) mod p

  1. 根据欧拉定理求逆元:

设m是大于1的整数,如果a是满足(a,m)=1的整数,则a^ф(m) 同余 1(mod) m

那么a的逆元为a^(ф(m)-1) (mod) m

2、求欧拉函数值:

φ函数的值  通式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数(小于等于1)就是1本身)。 (注意:每种质因数只一个。

1)使用广义欧几里得定理求解逆元

  1. #include <iostream>  
  2. #include <stdio.h>  
  3. using namespace std;  
  4. typedef long long ll;  
  5.   
  6. void ex_gcd(ll a, ll b, ll &x, ll &y, ll &d)  
  7. {  
  8.     if(!b)  
  9.     {  
  10.         d = a, x=1, y=0;  
  11.     }  
  12.     else{  
  13.         ex_gcd(b, a%b, y, x, d);  
  14.         cout << "a=" << a << " " << "b=" << b <<  " " << "a/b=" << a/b << " " << "a%b=" << a%b << " "  << "y="<< y << " " << "x=" << x << " "<< "d= "  << d << "\n";  
  15.         cout << "************************\n";  
  16.         y -= x*(a/b);  
  17.         cout << "y=" << y << "\n";  
  18.     }  
  19. }  
  20.   
  21. ll inv(ll t, ll p)  
  22. {  
  23.     ll d, x, y;//xt+yp=d     gcd(t,p)=d  
  24.     ex_gcd(t, p, x, y, d);  
  25.     return d == 1?(x%p + p)%p : -1;  
  26. }  
  27.   
  28. int main()  
  29. {  
  30.     ll a, p;  
  31.     while(~scanf("%lld %lld", &a, &p))//可输入多组测试样例  
  32.     {  
  33.         printf("%lld\n", inv(a, p));//如果不存在逆元,输出为-1  
  34.     }  
  35.     return 0;  
  36. }  
  1. 使用费马小定理求解逆元
  2. #include <iostream>  
  3. #include <stdio.h>  
  4. using namespace std;  
  5. typedef long long ll;  
  6.   
  7. ll pow_mod(ll a, ll b, ll p)//快速幂求a^bmod p  
  8. {  
  9.     ll ret = 1;  
  10.     while(b)  
  11.     {  
  12.         if(b&1)  
  13.             ret = (ret*a)%p;  
  14.         a = (a*a)%p;  
  15.         b >>= 1;  
  16.     }  
  17.     return ret;  
  18. }  
  19.   
  20. ll Fermat(ll a, ll p)  
  21. {  
  22.     return pow_mod(a, p-2, p);  
  23. }  
  24.   
  25. int main()  
  26. {  
  27.     ll a, p;  
  28.     while(~scanf("%lld %lld", &a, &p))//可输入多组测试样例  
  29.     {  
  30.         printf("%lld\n", Fermat(a, p));//如果不存在逆元,输出为-1  
  31.     }  
  32.     return 0;  
  33. }  
  34. // 1000 53 15  
  35.  
  36. 使用欧拉定理求解逆元
  37. #include <iostream>  
  38. #include <stdio.h>  
  39. using namespace std;  
  40. typedef long long ll;  
  41.   
  42. ll phi(ll n) {  
  43.     ll ans = n;  
  44.     for(int i = 2 ; i*i <= n ; i ++) {  
  45.         if(n%i==0) ans = ans - ans/i;  
  46.         while(n%i==0) n/=i;  
  47.     }  
  48.     if(n > 1) ans = ans - ans/n;  
  49.     return ans;  
  50. }  
  51.   
  52. ll pow_mod(ll a, ll b, ll p)//快速幂求a^bmod p  
  53. {  
  54.     ll ret = 1;  
  55.     while(b)  
  56.     {  
  57.         if(b&1)  
  58.             ret = (ret*a)%p;  
  59.         a = (a*a)%p;  
  60.         b >>= 1;  
  61.     }  
  62.     return ret;  
  63. }  
  64.   
  65. ll oula(ll a, ll p)  
  66. {  
  67.     int temp = phi(p);  
  68.     return pow_mod(a, temp-1, p);  
  69. }  
  70.   
  71. int main()  
  72. {  
  73.     ll a, p;  
  74.     while(~scanf("%lld %lld", &a, &p))//可输入多组测试样例  
  75.     {  
  76.         printf("%lld\n", oula(a, p));//如果不存在逆元,输出为-1  
  77.     }  
  78.     return 0;  
  79. }  
  80. // 1000 53 15  

2、求欧拉函数值

  1. #include<iostream>  
  2. #include<cstdio>  
  3. #include<cstring>  
  4. using namespace std;  
  5. int phi(int n) {  
  6.     int ans = n;  
  7.     for(int i = 2 ; i*i <= n ; i ++) {  
  8.         if(n%i==0) ans = ans - ans/i;  
  9.         while(n%i==0) n/=i;  
  10.     }  
  11.     if(n > 1) ans = ans - ans/n;  
  12.     return ans;  
  13. }  
  14. int main() {  
  15.     int n;  
  16.     while(~scanf("%d",&n) && n) {  
  17.         printf("%d\n",phi(n));  
  18.     }  
  19. }  
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值