文献研读|针对文生图大模型的后门攻击

前言:2024.05 开端,准备课程汇报需要集中研读论文。本篇文章重点介绍针对文生图大模型的后门攻击相关工作。

相关文章:针对大语言模型的后门攻击,详见此篇文章


1.Text-to-Image Diffusion Models can be Easily Backdoored through Multimodal Data Poisoning (ACM Multimedia 2023)

作者:Shengfang Zhai, et al. Peking University
代码链接:https://github.com/zhaisf/BadT2I
核心思想:通过数据投毒的方式,微调向Stable Diffusion 中注入后门,从而实现像素级、内容级和风格级的后门攻击。微调的同时,既要兼顾后门有效性,也要兼顾原始任务的性能。(Teacher模型辅助 Object-level 和 Style-level 的后门注入,如下图所示)。

在这里插入图片描述


2. Rickrolling the Artist: Injecting Backdoors into Text Encoders for Text-to-Image Synthesis (ICCV 2023)

作者:Lukas Struppek, et al. 德国🇩🇪达姆施塔特工业大学 (Technische Universität Darmstadt)
代码链接:https://github.com/LukasStruppek/Rickrolling-the-Artist

这是一篇针对「基于CLIP的文生图模型」后门攻击的文章,核心思想如下图所示。通过向 text encoder 中注入后门,使得 CLIP 在接收到含有特定触发器的 prompt 之后,将其编码成攻击者预设的prompt,顺水推舟生成攻击者预设的图片。

在这里插入图片描述

后门注入的方式就是传统的数据投毒,触发器的构造方式是改变特定字母的字形(例如把字母 o 变成 o ‾ \underline o o),这在之前的工作中(Li et al. 2021, CCS)也出现过。损失包括两个,一个是对于 clean prompt 的保真度,一个是 trigger prompt 与 target prompt 的语义相似度。训练时也借助Teacher模型辅助训练。

在这里插入图片描述


3. Personalization as a Shortcut for Few-Shot Backdoor Attack against Text-to-Image Diffusion Models Authors (AAAI 2024)

作者:Yihao Huang, et al. Nanyang Technological University, Singapore.
代码链接:https://github.com/Huang-yihao/Personalization-based_backdoor
核心思想:利用 Text Inversion 或 DreamBooth 过程注入后门,前者(nouveau [nu:‘vəʊ])只微调 Text encoder,后者(legacy token)只微调 Conditional Diffusion Model。这篇文章本质上也是数据投毒的方式,将触发集中特定 token 与 image 的对应关系注入到模型中,从而使得原始 text 与 image 的对应关系错位。

在这里插入图片描述

在这里插入图片描述


4. BadCLIP: Trigger-Aware Prompt Learning for Backdoor Attacks on CLIP (CVPR 2024)

作者:Jiawang Bai, et al. 清华大学
代码链接:https://github.com/jiawangbai/BadCLIP
核心思想:首先要明确的一点是,这篇文章所要攻击的任务为:基于 CLIP 的 Zero-shot 图像分类。攻击手段是:基于 Prompt Learning,训练一个可学习的 trigger δ \delta δ 和一个 Trigger-Aware Context Generator(本文中就是2层MLP,参数为 θ \theta θ),使得编码器生成的特征表示失真,即 CLIP输出的图文特征无法准确描述输入的文本或图像内容。注意:CLIP本身的 image encoder 和 text encoder 是不参与训练的!这种攻击方式的训练成本很低,文中每一类只需要16个样本即可注入后门。

在这里插入图片描述
个人评价:这篇文章挺有意思的,瞄准CLIP的广泛应用,设计一个专门针对 CLIP 的后门攻击方式,任务选取的也合适,基于 CLIP 的 Zero-shot 分类,属实惊艳了一把。


5. Nightshade: Prompt-Specific Poisoning Attacks on Text-to-Image Generative Models (IEEE S&P 2024)

作者:Shawn Shan, et al. University of Chicago.
项目链接:https://nightshade.cs.uchicago.edu/
核心思想:作者发现在大模型的训练过程中,并非所有的概念对应的训练样本都是等量的,也就是不同概念出现的频率有所不同。基于此,提出一种纯污染训练数据的概念投毒方法,流程如下:
在这里插入图片描述
与 dirty label 的中毒样本不同,Nightshade 基于下图构建中毒样本,在视觉上与中毒提示文本语义相似,而在图像特征层面与目标概念的ancher image 相似。
在这里插入图片描述
优化下式,其中第一项是为了保证扰动图像与Anchor图像的特征相似,第二项是确保扰动的不可感知性。

在这里插入图片描述

相较于 dirty label 方法,Nightshade 能够使用更少的中毒样本将后门注入成功。

个人评价:这篇文章是 clean-label 类型的后门在文生图大模型上的成功应用。要说创新大概就是场景创新了吧……


6. BAGM: A Backdoor Attack for Manipulating Text-to-Image Generative Models (TIFS 2024)

作者:Jordan Vice, et al. The University of Western Australia.
代码链接:https://github.com/JJ-Vice/BAGM
核心思想:针对文生图模型的 tokenizer、text encoder 和 generative model,分别提出不同深度的后门攻击方法。

在这里插入图片描述


后记:本文介绍的关于后门攻击的几篇工作,攻击对象或是 tokenizer,或是 text encoder,或是 conditional diffusion model,又或是 CLIP;攻击场景无外乎基于数据投毒的重训或微调;后门注入过程有借助教师模型的,有借助 text inversion/dreembooth的,还有借助 prompt learning 环节的。如果要想在这一方向进一步突破,可以看看DM模型内部结构还有哪一部分没有被关注到。


参考文献

  1. Text-to-Image Diffusion Models can be Easily Backdoored through Multimodal Data Poisoning. ACM Multimedia 2023.
  2. Rickrolling the Artist: Injecting Backdoors into Text Encoders for Text-to-Image Synthesis. ICCV, 2023.
  3. Personalization as a Shortcut for Few-Shot Backdoor Attack against Text-to-Image Diffusion Models Authors. AAAI, 2024.
  4. BadCLIP: Trigger-Aware Prompt Learning for Backdoor Attacks on CLIP. CVPR, 2024.
  5. Nightshade: Prompt-Specific Poisoning Attacks on Text-to-Image Generative Models. IEEE S&P, 2024.
  6. BAGM: A Backdoor Attack for Manipulating Text-to-Image Generative Models. TIFS, 2024.
  • 32
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_Meilinger_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值