JDA(Joint Distribution adaptation )一种联合分布自适应的方法。
问题描述:
迁移学习是一门利用源域知识来提升目标域知识的学科(这里说的比较笼统),JDA是一种即考虑两个域之间的边缘分布( marginal distributation)又考虑条件分布(conditional distribution)的经典迁移学习方法。
领域(Domain):一个领域(Domain)由两部分组成:一个m维的特征空间X 和边缘分布P(x)即D = {X,P(x)}且x∈X。
任务(Task):存在一个领域D,一个任务由一个有C种标签的数据集Y和一个分类器f(x)组成即T = {Y,f(x)},y∈Y,且f(x)= Q(y|x)可以被看做一个条件分布。
问题:给定一个有标记的源域Ds和一个未标记的目标域Dt。假定