【迁移学习】JDA(Joint Distribution adaptation )小结

JDA(Joint Distribution adaptation )一种联合分布自适应的方法。

问题描述:

迁移学习是一门利用源域知识来提升目标域知识的学科(这里说的比较笼统),JDA是一种即考虑两个域之间的边缘分布( marginal distributation)又考虑条件分布(conditional distribution)的经典迁移学习方法。
领域(Domain):一个领域(Domain)由两部分组成:一个m维的特征空间X 和边缘分布P(x)即D = {X,P(x)}且x∈X。
任务(Task):存在一个领域D,一个任务由一个有C种标签的数据集Y和一个分类器f(x)组成即T = {Y,f(x)},y∈Y,且f(x)= Q(y|x)可以被看做一个条件分布。
问题:给定一个有标记的源域Ds和一个未标记的目标域Dt。假定

在这里插入图片描述
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值