STL(Stratified Transfer Learning)分层迁移学习:
问题描述
提出了一个CDAR的问题:源域和目标域数据具有相同的维度、相同的标记,但是P(Xs)不等于 P(Xt)同时P(Ys|Xs)不等于P(Yt|Xt)。交叉领域学习的目标是利用源域的标记和数据来获取标记Yt。
整体farmworke 分为三个部分:
Majority Voting
Intra-class Transfer
Secend annotation
Majorigty Voting:
算是STL的预处理部分。通过在源域上训练好了的分类器对目标域进行分类,来给目标域打上伪标签。起到初始分类的作用。同时在分类过程中,有一部分难以分类的(或者说某个数据在分类器输出的可能性最大的标记也太小)将其标记为难以分类的部分。
这里的分类器可以有许多种选择比如SVM、PCA等,也可以用多个分类器共同决策。
Intra-class Transfer:
STL的核心步骤,原理是在伪标签的基础上进一步挖掘类内关系,从而进行迁移学习。在伪标签的每一类中分别进行特征迁移,最终将每一个类的特征子空间合成为一个子空间。
文章利用MMD(Maximu