【Deepseek】Windows本地部署Deepseek——小白版

前言

本文介绍在 Windows 系统上部署 Deepseek AIWindows 系统版本必须是 Windows10 或以上版本。本文教程是面向所有想体验 AI 玩家的一个简易教程,因此即使是小白也可以轻松完成体验,话不多说立马着手去干。

1. 关于 ollama

Ollama 是一款开源应用,可让你在 WindowsMacOSLinux 上使用命令行界面在本地运行、创建和共享大型语言模型。Ollama 最初支持 Llama2,然后扩展了其模型库以包括 MistralPhi-2 等模型。Ollama 让您能够轻松开始在您自己的硬件上运行 LLM,专为简化大型语言模型(LLM)在本地机器上的部署和运行而设计。它通过将模型权重、配置和数据打包为 Modelfile,优化了 LLM 的设置和配置过程,使得非专业用户也能方便地管理和运行这些模型。Ollama 支持多种 LLM,并提供跨平台支持,用户可以通过简单的命令行操作或 API 来启动和运行模型。它在文本生成、翻译、问答系统和代码生成等多个应用场景中具有广泛的应用价值。

2. 下载 ollama

ollama 官网链接:https://ollama.com/

进入官网映入眼帘的便是一个线条羊驼头像,正下方就是引人注目的 Download 按钮,直接点击进去。

在这里插入图片描述

这里我们选择 Windowslogo 点击下载。

在这里插入图片描述
在网络厉害的情况下就可以看到有下载任务开始进行了,由于这是通过 GitHub 托管的项目,需要是从 GitHub 上下载因此国内大多数网络到这里会开始转圈圈。

在这里插入图片描述
【解决办法有二】

  1. 通过自主的科学上网,即可正常访问该网址;
  2. 通过复制如下链接进行下载,虽然浏览器会弹出风险警告,忽略即可。

https://github.xzc888.top/ollama/ollama/releases/latest/download/OllamaSetup.exe

3. 安装 ollama

双击运行下载好的 OllamaSetup.exe 文件,ollama 的默认安装路径在 C 盘。
在这里插入图片描述

安装完成后系统不会弹出任何提示信息,只需要按键盘的 Win 键,或者通过查看右下角的系统托盘就会看到 ollama

在这里插入图片描述

打开系统终端,输入如下两条命令可用来验证 ollama 是否安装成功。

ollama -v

ollama --help

正常的执行结果会如下图所示。

在这里插入图片描述

4. 配置和部署模型

4.1. 配置&部署 AI 模型

首先在资源管理器中创建一个目录,用于保存 AI 模型的存储位置,这里笔者已经实现创建了一个空目录。

在这里插入图片描述

鼠标点击红框处,即可复制该目录的完成路径,接下来打开终端,输入如下命令

setx OLLAMA_MODELS "***"

[注]:此处的 *** 应替换为读者新创建的文件夹路径。

在这里插入图片描述

4.2. 部署 AI 模型

进入ollama 官网链接:https://ollama.com/,点击 Models

在这里插入图片描述
选择 deepseek-r1,再选择一个轻量级的模型 1.5b 版本,该模型在大多数机器上都可以正常运行,能基本能满足我们需要的体验效果了。选择量级越大的模型相对应也需要性能更好的硬件。
在这里插入图片描述

在这里插入图片描述
这里直接点击复制小框中的命令到终端中执行,即可开始下载模型。

ollama run deepseek-r1:1.5b

在这里插入图片描述
等到下载部署结束可以看到 success 的字样。

在这里插入图片描述

5. 体验 Deepseek

紧接着就可以直接在这里输入与 AI 交互。

在这里插入图片描述

#完

### 本地部署DeepSeek #### 环境准备 对于硬件需求而言,最低配置应满足:具备支持AVX2指令集的CPU、至少16GB内存以及不少于30GB的存储空间;而为了获得更佳性能体验,则建议采用配备NVIDIA GPU(例如RTX 3090及以上型号)、32GB内存和50GB存储容量以上的设备[^1]。 关于软件依赖方面,操作系统可以是Windows、macOS或者是Linux任意一种。值得注意的是,在某些特定场景下——比如当计划利用Open Web UI功能时,还需要事先安装好Docker工具。 #### 部署过程概述 按照官方指导文档中的说明执行相应操作即可实现DeepSeek的大规模语言模型于个人计算机上的私有化落地应用,并借助API接口来调用其推理能力。此间需着重关注几个要点:前期准备工作是否到位、能否顺利取得目标本的预训练权重文件、针对具体应用场景做出必要的效能调整措施以及确保整个系统的安全性不受威胁[^2]。 #### 利用宝塔面板简化部署流程 考虑到部分用户可能缺乏直接处理命令行的经验或是偏好图形化的交互方式,因此可以通过先安装宝塔服务器管理软件再在其之上构建所需的运行环境来进行更加便捷直观的操作: - **第一步** 是前往官方网站下载并依照提示完成宝塔本身的设置; - 接着依据指示引入Docker容器引擎服务组件以便后续加载镜像资源; - 对于实际启动DeepSeek程序来说存在两种途径可供选择,其中第二种被标记为更为推荐的方式; - 若有条件的话还可以考虑集成NVIDIA CUDA平台从而充分发挥GPU加速的优势提升运算效率[^3]。 最后提醒各位读者朋友注意定期访问项目主页查阅最新资讯更新和技术交流社区内的讨论帖文以保持所使用的解决方案处于最优状态[^4]。 ```bash # 示例代码用于展示如何拉取docker镜像(假设使用docker方式进行部署) docker pull deepseek:latest ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Imagine Miracle

爱你哟 =^ v ^=

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值