论文解读:(TransR)Learning Entity and Relation Embeddings for Knowledge Graph Completion

论文解读:(TransR)Learning Entity and Relation Embeddings for Knowledge Graph Completion

  TransH在TransE基础上做出的改进,提高了知识表示的效果,在一定程度上解决了复杂关系的处理,同时在链接预测、三元组分类和关系抽取任务上相比传统的方法(距离模型、非结构模型、单层神经网络、双线性模型等)达到最优,然而TransH也存在一定的问题。TransR作者发现TransH模型虽然有效的处理了复杂语义关系表示,但两个实体仍然处于相同的语义空间,因此不能够充分表示实体与关系的语义联系。

一、简要信息

序号属性
1模型名称TransH
2所属领域自然语言处理
3研究内容知识表示
4核心内容knowledge embedding
5GitHub源码https://github.com/mrlyk423/relation_extractionhttps://github.com/thunlp/KB2E
6论文PDFhttp://nlp.csai.tsinghua.edu.cn/~lyk/publications/aaai2015_transr.pdf)

二、摘要与引言

  知识图谱的完成可以实现目标实体之间的链接预测。本文我们研究了知识图谱表征的方法。最近TransE和TransH模型通过将关系视为一种从头实体到尾实体的翻译机制来获得实体和关系的表征。事实上一个实体可能有多个不同方面(特征),关系可能关注实体不同方面的特征,公共的实体特征空间不足以表征。本文,我们提出TransR模型构建实体和关系表征,将实体空间和关系空间相分离。然后我们以这种方式训练表征向量:首先通过将实体映射到关系空间中,其次在两个投影实体之间构建翻译关系。实验中,我们在三个任务上完成了验证,分别是链接预测、三元组分类和关系抽取。实验效果表明相比之前的基线模型,包括TransE和TransR,得到了一定的提升。
  完善的知识图谱旨在预测给定两个实体对的关系,即链接预测,期现如今面临的挑战包括(1)图谱中的结点包含不同类型和属性的实体、(2)边表示不同类型的关系。对于知识补全,我们不仅仅只是判断实体对是否存在关系,也需要预测具体的关系类。基于此,传统的链接预测方法则无法实现链接预测。最近一种新提出的表示学习是指将实体和关系嵌入到连续的向量空间中。
  TransE和TransH模型是基于这种表示学习。TransE在word2vec的启发之下,通过构建简单的语义表示 h + r ≈ t h+r\approx t h+rt 实现训练,TransH则基于TransE基础上能够对复杂关系进行表示。不过这两个模型均是假定实体和关系是在同一个语义空间中。作者提出一种新的策略,将实体和关系分别映射到不同的语义空间中,分别为entity space(实体空间)和relation space(关系空间)。
  TransR的主要思路如图所示:
在这里插入图片描述
假设实体对 ( h , r , t ) (h,r,t) (h,r,t) ,首先根据当前的关系 r r r 将头尾实体分别映射到关系空间中 h r , t r h_r,t_r hr,tr ,然后在关系空间中建模 h r + r ≈ t r h_r+r\approx t_r hr+rtr
  另外,在特定的关系下,实体对通常表现出不同的模式,因此不能单纯的将关系直接与实体对进行操作。我们通过将不同的头尾实体对聚类成组,并为每个组学习不同的关系向量来扩展TransR,称为基于聚类的TransR (CTransR)。

三、相关工作与主要贡献

  相关工作部分由于和TransH文章一样,请直接阅读【TransH】的相关工作部分。

四、算法模型详解(TransR)

  TransR模型:设实体对 ( h , r , t ) (h,r,t) (h,r,t) 的表征分别为 h , t ∈ R k \mathbf{h},\mathbf{t}\in\mathbb{R}^k h,tRk r ∈ R d \mathbf{r}\in\mathbb{R}^d rRd,其中 k ≠ d k\ne d k=d。对于每个关系 r r r 给定映射矩阵 M ∈ R k × d \mathbf{M}\in\mathbb{R}^{k\times d} MRk×d ,则有: h r = h M r \mathbf{h}_r=\mathbf{h}\mathbf{M}_r hr=hMr t r = t M r \mathbf{t}_r=\mathbf{t}\mathbf{M}_r tr=tMr。得分函数定义为 f r ( h , t ) = ∣ ∣ h r + r − t r ∣ ∣ 2 2 f_r(h,t)=||\mathbf{h}_r+\mathbf{r}-\mathbf{t}_r||_2^2 fr(h,t)=hr+rtr22 。约束条件为 ∣ ∣ h ∣ ∣ 2 ≤ 1 ||\mathbf{h}||_2\leq1 h21 ∣ ∣ r ∣ ∣ 2 ≤ 1 ||\mathbf{r}||_2\leq1 r21 ∣ ∣ t ∣ ∣ 2 ≤ 1 ||\mathbf{t}||_2\leq1 t21 ∣ ∣ h M r ∣ ∣ 2 ≤ 1 ||\mathbf{h}\mathbf{M}_r||_2\leq1 hMr21 ∣ ∣ t M r ∣ ∣ 2 ≤ 1 ||\mathbf{t}\mathbf{M}_r||_2\leq1 tMr21
  CTransR模型:受到piecewise linear regression(分段线性回归)的启发。
(1)首先将输入示例分为多个组。对于特定的关系 r r r ,所有的实体对 ( h , t ) (h,t) (h,t) 可被聚类到多个簇中,每个簇中的实体对可被认为与关系 r r r 有关。
(2)为每个簇对应的关系向量 r c \mathbf{r}_c rc表征,并得到对应的 M r \mathbf{M}_r Mr ,然后将每个簇中的头实体和尾实体映射到对应关系空间中 h r , c = h M r \mathbf{h}_{r,c}=\mathbf{h}\mathbf{M}_r hr,c=hMr t r , c = t M r \mathbf{t}_{r,c}=\mathbf{t}\mathbf{M}_r tr,c=tMr。得分函数定义为 f r ( h , t ) = ∣ ∣ h r , c + r c − t r , c ∣ ∣ 2 2 + α ∣ ∣ r c − r ∣ ∣ 2 2 f_r(h,t)=||\mathbf{h}_{r,c}+\mathbf{r}_c-\mathbf{t}_{r,c}||_2^2+\alpha ||\mathbf{r}_c-\mathbf{r}||_2^2 fr(h,t)=hr,c+rctr,c22+αrcr22
  TransR和CTransR的区别在于两者的关系空间不同,前者只有一个关系空间,亦即对所有的关系都在同一个空间中;后者则是根据不同的关系,对属于同一个关系的所哟实体对聚集在一个簇中,每个关系代表不同的空间。
  损失函数:损失函数与之前的一样:

L = ∑ ( h , r , t ) ∈ S ∑ ( h ′ , r , t ′ ) ∈ S ′ [ γ + f r ( h , t ) − f r ( h ′ , t ′ ) ] + L=\sum_{(h,r,t)\in S}\sum_{(h',r,t')\in S'}[\gamma + f_r(h,t)-f_r(h',t')]_+ L=(h,r,t)S(h,r,t)S[γ+fr(h,t)fr(h,t)]+

  作者指出训练策略与负样本构建则与TransH一样,因此在此不做详细讲解。

五、实验及分析

  实验主要包括三个任务,实验的具体细节与TransH相同 ,不做详细介绍。
(1)链接预测:
在这里插入图片描述
(2)三元组分类:
在这里插入图片描述
(3)关系抽取:
在这里插入图片描述

六、论文总结与评价

  本文作者提出的TransR和CTransR模型可以将相同关系的三元组映射到对应关系的空间中,有效的对三元组进行语义表示,在包括链接预测、三元组分类和关系抽取任务上均实现最好效果。作者提出三个未来工作,包括(1)利用推理信息增强图谱的表征;(2)探究文本与图谱的表示模型;(3)基于CTransR,研究更复杂的模型。
  TransR模型巧妙的借鉴了TransH模型的空间投影想法,更细致的将不同的关系作为不同的投影空间,试想一下,每个三元组中的两个实体之所以在同一个三元组,很大程度上是因为两个实体的某些特性符合当前的关系,而这些特性在这个关系所在的语义空间中满足一定的规律,亦即 h r + r ≈ t r h_r+r\approx t_r hr+rtr
  TransR还有一些缺点。例如引入的空间投影策略增加了计算量、头尾实体一同投影到关系空间,而未考虑到头尾实体的不同语义类型、仅将实体投影到关系空间中还不够完全提高语义表能力等。TransD模型试图改进这些不足之处。

### 回答1: 1. 关系抽取(Relation Extraction) 2. 关系分类(Relation Classification) 3. 关系聚合(Relation Aggregation) 4. 关系预测(Relation Prediction) 5. 关系推理(Relation Inference) 6. 关系推断(Relation Deduction) 7. 关系推荐(Relation Recommendation) 8. 关系检索(Relation Retrieval) 9. 实体识别(Entity Recognition) 10. 实体消歧(Entity Disambiguation) 11. 实体关系链接(Entity Relation Linking) 12. 实体聚类(Entity Clustering) 13. 实体推理(Entity Inference) 14. 实体分类(Entity Classification) 15. 属性抽取(Attribute Extraction) 16. 属性预测(Attribute Prediction) 17. 属性推理(Attribute Inference) 18. 属性分类(Attribute Classification) 19. 属性推荐(Attribute Recommendation) 20. 属性推断(Attribute Deduction) ### 回答2: 1. TransE(Translation-based Embedding Model): 一种基于翻译关系的模型,用于学习实体和关系之间的嵌入表示。 2. TransH(Translation-based Embedding Model with Heterogeneous Spaces): TransE的改进版本,引入了关系特定的超平面,以更准确地建模实体和关系之间的语义关联。 3. TransR(Translation-based Embedding Model with Relation-specific Embeddings: TransE的进一步改进,通过引入关系特定的嵌入空间来处理原始模型中存在的一对多和多对一关系问题。 4. TransD(Translation-based Embedding Model with Relational Dependencies): TransE的另一种扩展,通过引入关系特定的变换矩阵来建模实体和关系之间的依赖关系。 5. RESCAL(RElational model with Semi-Continuous Embeddings and Compositional Logic): 一种基于矩阵分解的模型,通过分解关系张量来学习实体和关系之间的表示。 6. DistMult(Distributed Multi-relationships model): 一种基于张量分解的模型,通过特征向量间的点积来判断事实的置信度。 7. ComplEx(Complex Embeddings: 一种基于复数嵌入的模型,将实体和关系都表示为复数向量,通过复数运算来进行语义推理。 8. ConvE(Convolutional 2D Knowledge Graph Embeddings: 一种基于卷积神经网络的模型,通过卷积操作将嵌入向量转化为二维图像,以捕捉实体和关系之间的局部模式。 9. RotatE(Rotation-based Embedding): 一种基于旋转变换的模型,通过将关系嵌入向量进行旋转操作,来建模实体和关系之间的多种语义关系。 10. HolE(Holographic Embeddings: 一种基于张量张量分解的模型,通过张量外积操作来计算实体和关系之间的匹配度。 11. KG2E(Knowledge Graph Embedding with Entity Descriptions): 一种基于图神经网络的模型,通过结合实体描述和关系属性来学习实体和关系之间的嵌入表示。 12. ConvKB(Convolutional Neural Networks for Knowledge Base Completion: 一种基于卷积神经网络的模型,通过卷积操作来学习实体和关系之间的表示。 13. SimplE(Simplifying Knowledge Graphs into Simple Embeddings: 一种基于正交约束的模型,通过引入正交变换来简化知识图谱的表示。 14. SSP(Semantic Space Projection): 一种基于语义空间投影的模型,通过学习实体和关系之间的线性变换来建模知识图谱。 15. NTN(Neural Tensor Networks): 一种基于神经张量网络的模型,通过张量运算来建模实体和关系之间的复杂关系。 16. RDIG(Relational Deep Intelligence Group): 一种基于深度学习的模型,通过多层神经网络来学习实体和关系之间的嵌入表示。 17. NSC(Neural Semantic Composition): 一种基于神经网络的模型,通过组合实体和关系之间的嵌入向量来生成知识图谱的语义表示。 18. IPTransE(Improved Path-based TransE): TransE的进一步改进版本,通过加入路径信息来改善实体和关系之间的嵌入学习。 19. GPE(Graph Pattern Extractor): 一种基于图模式提取的算法,通过分析知识图谱中的子图来挖掘实体和关系之间的高阶关系。 20. RDF2Vec(RDF to Vector): 一种基于Word2Vec的算法,通过将RDF图谱数据转化为连续向量,来学习实体和关系之间的表示。 ### 回答3: 以下为20个比较流行的知识图谱算法模型: 1. TransE:基于关系三元组的知识图谱表示学习模型,通过学习实体和关系的向量表示来捕捉关系的语义。 2. TransH:在TransE的基础上引入超平面来建模关系,以更好地表示实体之间的关系。 3. TransR:通过学习实体和关系的映射矩阵来进行关系的建模,提高了关系的表示能力。 4. TransD:在TransR的基础上引入动态实体描述向量,通过描述实体在不同关系下的特征来学习知识图谱表示。 5. RESCAL:通过建模关系张量来进行知识图谱表示学习,能够捕捉实体和关系之间的复杂非线性关系。 6. ComplEx:基于复数张量分解的知识图谱表示学习模型,能够更好地处理关系的对称性和传递性。 7. HolE:通过利用对称性和循环性质,将关系表示为低维的向量,提高了知识图谱表示的效果。 8. ConvE:将知识图谱表示学习问题转化为卷积神经网络的学习问题,能够在保证语义表示的情况下减少参数量。 9. STransE:通过引入关系路径信息,改进了TransE模型,提高了关系的表示能力。 10. R-GCN:在图卷积网络的基础上,利用关系的传播能力对知识图谱进行表示学习。 11. KG2E:通过引入关系属性向量,捕捉实体和关系之间的语义信息,提高了知识图谱的表示能力。 12. TransGAN:将生成对抗网络应用于知识图谱表示学习,能够生成更真实的知识图谱实体和关系。 13. ComplexE:基于复数表示的知识图谱嵌入模型,能够更好地处理复杂关系和多对一关系。 14. PTransE:通过引入关系路径信息和预训练的实体向量,改进了TransE模型,提高了知识图谱的表示能力。 15. ConvKB:将知识图谱表示学习问题转化为卷积神经网络的二分类问题,提高了知识图谱表示的效果。 16. TuckER:利用张量分解技术进行知识图谱表示学习,提高了关系的建模能力。 17. BootEA:利用知识图谱中的边缘实体(bridge entity)进行表示学习,提高了知识图谱表示的效果。 18. SimplE:将知识图谱表示问题转化为线性关系预测问题,提高了表示学习的效率和准确性。 19. KALE:综合考虑知识图谱中的拓扑结构和语义信息,进行表示学习和关系预测。 20. ProjE:通过投影矩阵的方式学习知识图谱表示,提高了关系的表示能力。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

华师数据学院·王嘉宁

$感谢支持$

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值