PaperReading-TransR,《Learning Entity and Relation Embeddings for Knowledge Graph Completion

这篇博客介绍了TransR模型解决知识图谱中自反、一对多、多对一关系问题的思路,通过实体与关系的独立空间映射提升表示能力。CTransR作为TransR的改进,通过聚类进一步优化关系表示。作者寻求与相关研究者交流,并希望获取TransR/CTransR的实现代码。
摘要由CSDN通过智能技术生成

本文记录了阅读TransR论文时的相关内容,如果有做相关工作的同学,欢迎与我沟通联系 zhaoliang19960421@outlook.com

背景

TransR论文的提出还是为了来解决在TransE中无法解决的自反、一对多、多对一的关系问题。
有一个很显然的想法就是,在知识图谱中的实体和关系是不一样,那么他们存在的语义空间也就应该不一样,实体空间就是专门的来表示实体上的属性,关系空间就是来表示实体之间的关系内容的。
TransR就是利用这样的想法,对于实体和关系分别构建了一个空间(空间维度可以一样,也就是说当两个空间维度一样的时候实际上和TransE是一样的)。在计算三元组的势能差时,由于实体和关系不在同一个空间中,无法直接的计算,需要用一种映射方法将实体映射到对应的关系空间里面,然后利用在关系空间里面的实体的映射向量进行计算。

思路

在论文中的图像也清楚的显示TransR 和TransE的区别
1
对于每一个关系,都有一个映射矩阵,这个矩阵负责将实体(包括头实体和尾实体)从实体空间映射到关系空间,然后在关系空间中进行计算(论文中写的是在关系空间中进行TransE)
论文上的图片在原始的实体空间中的对于每一类实体(头实体、尾实体)中都是聚集在一起的(三角形和圆形);但是通过映射之后,和这个关系有关的实体被聚集其它的被远离(三角形都远离了圆形,而圆形是具有这个关系的)。从图上

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值