一开始直接在本地环境部署,发现cuda版本冲突,所以改用docker,docke部署既不影响显卡性能,又可以避免环境冲突
1.创建docker容器
1.1. 拉取带有cuda11.7+cudnn8的镜像
docker pull andersen9419/cuda11.7.1_cudnn8_ubu22_torch2.0
1.2.运行容器
docker run --gpus all --net=host -d -it --name VisualGLMsat andersen9419/cuda11.7.1_cudnn8_ubu22_torch2.0:latest
参数解释:
–gpus all 使得docker容器可以使用宿主机的所有gpu
–net=host配置docker容器使用宿主机的网络,这样宿主机如果开启了代理,do

本文详细描述了如何在本地环境中通过Docker部署带有CUDA11.7和cudnn8的镜像,解决网络代理配置、依赖安装、报错修复等问题,以及如何在VisualGLM中进行模型微调的过程。
最低0.47元/天 解锁文章
1319





