VisualGLM部署&微调&docker环境

本文详细描述了如何在本地环境中通过Docker部署带有CUDA11.7和cudnn8的镜像,解决网络代理配置、依赖安装、报错修复等问题,以及如何在VisualGLM中进行模型微调的过程。

一开始直接在本地环境部署,发现cuda版本冲突,所以改用docker,docke部署既不影响显卡性能,又可以避免环境冲突

1.创建docker容器

1.1. 拉取带有cuda11.7+cudnn8的镜像

docker pull andersen9419/cuda11.7.1_cudnn8_ubu22_torch2.0

1.2.运行容器

docker run --gpus all --net=host -d  -it --name VisualGLMsat andersen9419/cuda11.7.1_cudnn8_ubu22_torch2.0:latest

参数解释:
–gpus all 使得docker容器可以使用宿主机的所有gpu
–net=host配置docker容器使用宿主机的网络,这样宿主机如果开启了代理,do

评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值