一个例子搞懂模型训练和参数更新的过程

本文详细介绍了机器学习中线性回归模型的训练过程,包括前向传播计算预测值,损失函数的均方误差计算,反向传播求解梯度,以及使用梯度下降法更新参数。强调了学习率对训练速度的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模型训练和更新参数的过程是机器学习中的核心。这个过程通常涉及多个步骤,包括前向传播、损失计算、反向传播和参数更新。下面我将通过一个简单的线性回归模型的例子来解释这些步骤:

线性回归模型示例

假设我们有一个简单的线性关系 y = w x + b y=wx+b y=wx+b,其中 y y y 是目标变量, x x x 是特征变量, w w w b b b 是模型参数(权重和偏置)。我们的目标是通过训练数据来找到最佳的 w w w b b b ,使得模型的预测与真实数据尽可能接近。

1. 前向传播

在前向传播中,模型根据当前参数和输入计算其预测值。对于给定的输入 x i {x_i} xi,模型的预测是:

y ^ i = w ⋅ x i + b \hat{y}_i=w\cdot x_i+b y^i=wxi+b

2. 损失计算

一旦有了预测,我们需要计算损失(或误差)。损失函数度量预测值和真实值之间的差异。常用的损失函数之一是均方误差(MSE),计算公式如下:

L = 1 N ∑ i = 1 N ( y ^ i − y i ) 2 L=\frac1N\sum_{i=1}^N(\hat{y}_i-y_i)^2 L=N1i=1N(y^iyi)2

这里, N N N 是样本的数量, y i y_i yi 是真实值, y ^ i \hat{y}_i y^i 是预测值

3. 反向传播

一旦计算了损失,我们就需要根据损失函数的梯度来调整模型参数。这一步称为反向传播,它涉及到计算损失函数相对于每个参数的导数(梯度)。对于线性回归,梯度计算如下:

∂ L ∂ w = 2 N ∑ i = 1 N x i ( y ^ i − y i ) ∂ L ∂ b = 2 N ∑ i = 1 N ( y ^ i − y i ) \begin{aligned}&\frac{\partial L}{\partial w}=\frac2N\sum_{i=1}^Nx_i(\hat{y}_i-y_i)\\&\frac{\partial L}{\partial b}=\frac2N\sum_{i=1}^N(\hat{y}_i-y_i)\end{aligned} wL=N2i=1Nxi(y^iyi)bL=N2i=1N(y^iyi)

4. 参数更新

最后,我们使用梯度下降方法更新参数。这个步骤简单地减去梯度与学习率的乘积从当前参数值:

w = w − η ∂ L ∂ w b = b − η ∂ L ∂ b \begin{aligned} &w=w-\eta\frac{\partial L}{\partial w} \\ &b=b-\eta\frac{\partial L}{\partial b} \end{aligned} w=wηwLb=bηbL

其中 η 是学习率, \text{其中}\eta\text{是学习率,} 其中η是学习率,,一个小的正数,控制学习的速度。

循环过程

以上四个步骤在每个训练批次中重复执行,每次迭代都会使用一组新的训练数据(如果是批量梯度下降)。通过多次迭代,模型参数逐渐调整,以最小化整个训练集上的总损失。这个过程会一直进行,直到模型的性能不再显著提高或达到预设的迭代次数。

### 神经网络预训练方法及教程 #### 预训练的本质与意义 模型训练是一种通过在大规模数据集上预先训练神经网络来提取通用特征的技术。这种方法能够显著提升下游任务的表现,尤其是在标注数据有限的情况下[^1]。 #### 预训练的主要方法 常见的预训练方法可以分为以下几类: - **无监督预训练** 该方法通常用于未标记的数据集,利用自编码器(Autoencoder)、变分自编码器(VAE)或生成对抗网络(GAN)等技术进行特征学习。这些模型能够在不依赖标签的情况下捕捉到输入数据的潜在结构。 - **有监督预训练** 使用大规模已标注数据集(如ImageNet)对模型进行训练,从而获得强大的特征表示能力。这种预训练方式广泛应用于卷积神经网络(CNN),例如VGG、ResNet等架构[^3]。 - **迁移学习中的微调** 微调是指基于已经完成的预训练模型,在特定领域的小规模数据集上进一步调整参数过程。这种方式不仅减少了计算成本,还提高了模型适应新任务的能力。 #### 实战案例:图神经网络的基础与应用 对于更复杂的结构化数据(如社交网络、分子结构等),图神经网络(GNNs)提供了一种有效的解决方案。其核心思想在于通过对节点及其邻居的信息聚合来进行特征传播更新[^2]。以下是实现图神经网络的一个简单例子: ```python import torch from torch_geometric.nn import GCNConv class GNN(torch.nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super(GNN, self).__init__() self.conv1 = GCNConv(input_dim, hidden_dim) self.conv2 = GCNConv(hidden_dim, output_dim) def forward(self, data): x, edge_index = data.x, data.edge_index x = self.conv1(x, edge_index) x = torch.relu(x) x = self.conv2(x, edge_index) return x ``` 此代码片段展示了如何使用PyTorch Geometric库构建一个简单的两层GCN模型。 #### 资源推荐 为了深入理解并实践神经网络预训练的相关技术,可参考如下资源: - 文章《神经网络算法 - 一文搞懂模型训练Pre-training》提供了关于预训练本质、原理以及应用场景的全面解析。 - PyTorch官方文档中有关于迁移学习的具体指南,特别是针对计算机视觉领域的经典模型(如VGG16、ResNet50)进行了详细介绍。 - 对于希望探索图神经网络的学习者,《图神经网络实战》系列文章是一个很好的起点,它涵盖了从基础知识到实际操作的全过程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值