英文:YOLO Nano: a Highly Compact You Only Look Once Convolutional Neural Network for Object Detection
中文:YOLO Nano---一种高度紧凑YOLO卷积神经网络的目标检测
论文下载链接:https://arxiv.org/abs/1910.01271
非官方的githubs实现链接:https://github.com/liux0614/yolo_nano
摘要
目标检测仍然是计算机视觉领域研究的⼀个活跃领域,通过设计⽤于解决目标检测的深度卷积神经⽹络,该领域已取得了相当⼤的进步和成功。尽管取得了这些成功,但是在边缘和移动场景下⼴泛部署此类目标检测⽹络的最⼤挑战之⼀是对计算和内存的⾼要求。因此,对有效的深度神经⽹络设计的研究兴趣⽇益增⻓架构适合边缘和移动应⽤。在这项研究中,我们介绍了YOLO Nano,这是⼀种⾼度紧凑的深度卷积神经⽹络,⽤于目标检测。利⽤⼈机协作设计策略来创建YOLO Nano,其中基于YOLO系列单发⽬标检测⽹络体系结构的设计原理,进⾏有原则的⽹络设计原型,并与机器驱动的设计探索相结合,以创建紧凑的⽹络⾼度定制的模块级宏体系结构和微体系结构设计,专为嵌⼊式对象检测任务⽽设计。拟议的YOLO Nano具有4.0MB的模型⼤⼩(分别⽐Tiny YOLOv2和Tiny YOLOv3⼩15.1x和> 8.3x),并且需要4.57B的操作来进⾏推理(分别> 34),⽽mAP仍达到69。在不同功率预算下,对Jetson AGX Xavier嵌入式模块的推理速度和功率效率进行的实验进一步证明了YOLO Nano在嵌入式场景中的功效。
1.引言
在计算机视觉领域中的一个活跃领域是目标检测,其目标不仅是在场景中定位感兴趣的对象,而且还为这些感兴趣的对象中的每一个分配一个类别标签。最近在目标检测领域取得的巨大成就源于深度学习的现代进展[8,7],特别是利用了深度卷积神经网络。最初的重点主要是提高准确性,从而导致越来越复杂的对象检测网络,例如SSD [11],R-CNN [2],Mask R-CNN [3]以及这些网络的其他扩展形式[6, 9、18]。尽管这样的网络展示了最新的目标检测性能,但由于计算和内存的限制,它们即使不是不可能部署在边缘设备和移动设备上也非常具有挑战性。实际上,在嵌入式处理器上运行时,甚至更快的变体,例如Faster R-CNN [15],也具有低单位数帧速率的推理速度。这极大地限制了此类网络在广泛应用中的广泛采用,例如无人驾驶飞机,视频