基于python的九轴惯性传感器的数据预处理代码-中值滤波实验

本文分享了使用Python进行九轴惯性传感器数据预处理的方法,重点介绍了中值滤波技术的应用,通过实验对比了原始数据与处理后数据的方差,并展示了图形化的处理效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**

基于python的九轴惯性传感器的数据预处理代码-中值滤波实验

**
import random
import numpy as np
import pandas as pd
import scipy.signal as signal
import matplotlib.pyplot as plt
import time

#导入传感器的9列数据
f=pd.read_csv(“G:/桌面文件/传感器数据1.csv”,usecols=[1,2,3,4,5,6,7,8,9])

ax1=f[“ax”].values
ay1=f[“ay”].values*(-1)
az1=f[“az”].values

mx1=f[“mx”].values
my1=f[“my”].values
mz1=f[“mz”].values

gx1=f[“gx”].values
gy1=f[“gy”].values
gz1=f[“gz”].values

#原始数据除以对应的灵敏度

x1=ax1/16384
x2 =ay1/16384
x3=az1/16384

x4=gx1/16.4
x5=gy1/16.4
x6=gz1/16.4

x7=mx1/0.6
x8=my1/0.6
x9=mz1/0.6

print(“gyrX原始数据的方差:”)
arr_var1 = np.var(x1)
print(arr_var1)

#d=cv2.blur(x,10)
d1=signal.medfilt(x1,11) #一维中值滤波
d2=signal.medfilt(x2,11)
d3=signal.medfilt(x3,11)

d4=signal.medfilt(x4,11)
d5=signal.medfilt(x5,11)
d6=signal.medfilt(x6,11)

d7=signal.medfilt(x7,11)
d8=signal.medfilt(x8,11)
d9=signal.medfilt(x9,11)

#中值滤波后数据的方差
print(“ax中值滤波数据的方差:”)
arr_var2 = np.var(d1)
print(arr_var2)

print(“ay中值滤波数据的方差:”)
arr_var2 = np.var(d2)
print(arr_var2)

print(“az中值滤波数据的方差:”)
arr_var2 = np.var(d3)
print(arr_var2)

print(“gx中值滤波数据的方差:”)
arr_var2 = np.var(d4)
print(arr_var2)

print(“gy中值滤波数据的方差:”)
arr_var2 = np.var(d5)
print(arr_var2)

print(“gz中值滤波数据的方差:”)
arr_var2 = np.var(d6)
print(arr_var2)

print(“mx中值滤波数据的方差:”)
arr_var2 = np.var(d7)
print(arr_var2)

print(“my中值滤波数据的方差:”)
arr_var2 = np.var(d8)
print(arr_var2)

print(“mz中值滤波数据的方差:”)
arr_var2 = np.var(d9)
print(arr_var2)

#图形绘制

x0=list(range(len(x1)))

plt.figure(1)
plt.subplot(311)

#d1.axis.set_major_locator(MultipleLocator(10))

plt.plot(x0,x1,c=“r”,label=“original”)
plt.plot(x0,d1,c=“blue”,label=“revised”)
plt.title(“middle-ax”,fontsize=10,fontname=“Times New Roman”)#标题

plt.subplot(312)
plt.plot(x0,x2,c=“r”,label=“original”)
plt.plot(x0,d2,c=“blue”,label=“revised”)
plt.title(“middle-ay”,fontsize=10,fontname=“Times New Roman”)#标题

plt.subplot(313)
plt.plot(x0,x3,c=“r”,label=“original”)
plt.plot(x0,d3,c=“blue”,label=“revised”)
plt.title(“middle-az”,fontsize=10,fontname=“Times New Roman”)#标题
plt.tight_layout()

plt.figure(2)
plt.subplot (311)
plt.plot(x0,x4,c=“r”,label=“original”)
plt.plot(x0,d4,c=“blue”,label=“revised”)
plt.title(“middle-gx”,fontsize=14,fontname=“Times New Roman”)#标题

plt.subplot(312)
plt.plot(x0,x5,c=“r”,label=“original”)
plt.plot(x0,d5,c=“blue”,label=“revised”)
plt.title(“middle-gy”,fontsize=14,fontname=“Times New Roman”)#标题

plt.subplot (313)
plt.plot(x0,x6,c=“r”,label=“original”)
plt.plot(x0,d6,c=“blue”,label=“revised”)
plt.title(“middle-gz”,fontsize=14,fontname=“Times New Roman”)#标题
plt.tight_layout()

plt.figure(3)
plt.subplot (311)
plt.plot(x0,x7,c=“r”,label=“original”)
plt.plot(x0,d7,c=“blue”,label=“revised”)
plt.title(“middle-mx”,fontsize=14,fontname=“Times New Roman”)#标题

plt.subplot (312)
plt.plot(x0,x8,c=“r”,label=“original”)
plt.plot(x0,d8,c=“blue”,label=“revised”)
plt.title(“middle-my”,fontsize=14,fontname=“Times New Roman”)#标题

plt.subplot(313)
plt.plot(x0,x9,c=“r”,label=“original”)
plt.plot(x0,d9,c=“blue”,label=“revised”)
plt.title(“middle-mz”,fontsize=14,fontname=“Times New Roman”)#标题
plt.tight_layout()
plt.legend()
plt.show()

实验结果如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

由于本人python还在学基础阶段,所以代码写的很一般,也很直白,希望能够一起交流关于姿态解算,传感器标定等问题,欢迎指导,我在不断改进。

### FPGA实现图像预处理中的中值滤波法 #### 背景介绍 中值滤波是一种非线性滤波技术,主要用于去除图像中的脉冲噪声(如椒盐噪声),同时保留边缘细节[^5]。相比于均值滤波,它能够更好地保护图像的边界信息而不模糊图像结构[^1]。 在FPGA平台上实现中值滤波具有显著优势,因为FPGA可以通过硬件并行化加速图像处理流程,从而大幅缩短处理时间[^2]。以下是关于如何在FPGA上实现中值滤波的具体方法: --- #### 法原理 对于一幅二维灰度图像,假设当前窗口大小为 \(3 \times 3\) 的像素区域,则中值滤波的核心操作是从这个像素值中找到中间值作为新中心像素的值。具体步骤如下: 1. 遍历图像中的每个像素点。 2. 对于每个像素点,选取其周围 \(3 \times 3\) 的邻域范围内的所有像素值。 3. 将这些像素值按从小到大排序。 4. 取排序后的第5个值(即中位数)替代原像素值。 此过程可扩展至更大的窗口尺寸,但通常为了效率考虑,\(3 \times 3\) 是最常用的选择[^4]。 --- #### FPGA实现的关键点 1. **数据流管理** - 输入图像的数据需被缓存以便后续访问相邻像素。一般通过移位寄存器或双端口RAM存储多个扫描行的数据。 2. **窗口提取与排序** - 提取目标像素周围的 \(3 \times 3\) 像素矩阵,并将其送入排序模块。排序逻辑可通过冒泡排序或其他适合硬件实现的方式完成。 3. **流水线设计** - 利用FPGA的并行特性,将读取、排序和写回三个阶段分成独立的功能单元并通过流水线连接起来,以此提升吞吐量。 4. **资源优化** - 排序电路可能消耗较多逻辑门数量;因此,在实际开发过程中应注重面积与时延之间的平衡[^3]。 下面给出一段简单的Verilog代码片段用于演示基本思路: ```verilog module median_filter ( input wire clk, input wire reset_n, input wire [7:0] pixel_in, output reg [7:0] pixel_out ); reg [7:0] window_buffer [8:0]; // 存储3x3窗口的像素值 integer i; always @(posedge clk or negedge reset_n) begin if (!reset_n) begin for (i = 0; i < 9; i = i + 1) begin window_buffer[i] <= 0; end pixel_out <= 0; end else begin // 更新窗口缓冲区 {window_buffer[8], window_buffer[7:0]} <= {pixel_in, window_buffer[7:0]}; // 进行简单排序(此处仅为示意) integer j; reg temp; for(i=0;i<8;i=i+1)begin for(j=0;j<(8-i);j=j+1)begin if(window_buffer[j]>window_buffer[j+1])begin temp=window_buffer[j]; window_buffer[j]=window_buffer[j+1]; window_buffer[j+1]=temp; end end end // 输出中值 pixel_out <= window_buffer[4]; end end endmodule ``` 上述代码仅展示了一个简化版的设计框架,真实项目还需要加入更多控制信号以及错误检测机制。 --- #### 性能评估 相比软件决方案,采用FPGA实现中值滤波具备以下优点: - 处理速度更快; - 更低功耗; - 支持实时视频流处理。 然而也存在一些挑战,比如复杂度较高的硬件描述语言编程需求以及有限的芯片资源约束等问题需要克服。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值