【深度学习】【ICCV2019】TensorMask:A Foundation for Dense Object Segmentation

本文探讨了如何使用4D张量来改进实例分割,特别是针对Mask R-CNN的挑战。作者提出了特征对齐和Tensor Bipyramid的概念,解决了不同尺度特征图预测物体时的对齐问题。实验部分比较了不同头部结构对于物体大小适配的影响。
摘要由CSDN通过智能技术生成

【ICCV2019】TensorMask:A Foundation for Dense Object Segmentation

在这里插入图片描述

概要

目前(2019年前)基于密集网格式的滑动窗口目标检测器很流行也很成功(SSD,RetinaNet等),但是实例分割仍是由先检测再分割的Mask R-CNNR-CNN主导。本文提出了一个4D张量来代表预测的mask(其实就是将通道表示成一个固定大小区域的mask)。

  • 出发点:dense instance segmentation
  • 解决思路:developing effective representations for dense masks

结构

第三章看起来很复杂,据我的理解(若有错误还请指出),主要的就是两点。第一点就是特征的对齐,如下图所示。
在这里插入图片描述
左图这些五颜六色的小方框就是(y,x)点对应的通道特征,如果我们把通道reshape成VxU来代表这个中心点(y,x)点产生的mask,会有特征不对齐的问题,因为明明是这个点的特征,却用这个特征去表示周围点的mask特征不合适。所以就有了右图的对齐操作,这样这个点产生的特征对应了该点的mask特征。

第二点就是Tensor Bipyramid,提出这个是因为不同大小的特征图需要不同的窗口去产生mask,比如小的特征图&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值