# 一、函数解释

torch/_C/_VariableFunctions.py的有该定义，意义就是将Tensor进行转置

    def t(self, input): # real signature unknown; restored from __doc__
"""
t(input) -> Tensor

Expects :attr:input to be a matrix (2-D tensor) and transposes dimensions 0
and 1.

Can be seen as a short-hand function for :meth:transpose(input, 0, 1)

Args:
input (Tensor): the input tensor

Example::

>>> x = torch.randn(2, 3)
>>> x
tensor([[ 0.4875,  0.9158, -0.5872],
[ 0.3938, -0.6929,  0.6932]])
>>> torch.t(x)
tensor([[ 0.4875,  0.3938],
[ 0.9158, -0.6929],
[-0.5872,  0.6932]])
"""
pass

# 二、用法示例

1.示例代码如下

import torch

rectangle_height = 3
rectangle_width = 3
inputs = torch.randn(rectangle_height, rectangle_width)
for i in range(rectangle_height):
for j in range(rectangle_width):
inputs[i] = i * torch.ones(rectangle_width)

print(inputs)
inputs2 = inputs.t()
print(inputs2)
inputs = inputs + inputs2
print(inputs)

2.运行结果，其中矩阵加上其转置矩阵得到了一个对角矩阵~

tensor([[0., 0., 0.],
[1., 1., 1.],
[2., 2., 2.]])
tensor([[0., 1., 2.],
[0., 1., 2.],
[0., 1., 2.]])
tensor([[0., 1., 2.],
[1., 2., 3.],
[2., 3., 4.]])

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客