凸优化简介16

凸函数与不变操作(Invariant Operations)

对于一般的凸函数的最小化问题:
min ⁡ f 0 ( x ) s . t .    f i ( x ) ≤ 0 , i = 1 , … m x ∈ Q ⊆ R n \min f_0(x)\\ s.t.\ \ f_i(x)\leq 0, i=1,\dots m\\ x\in Q \subseteq \mathbb{R}^n minf0(x)s.t.  fi(x)0,i=1,mxQRn
其中 Q Q Q是一个闭凸集,并且 f i ( x ) , i = 0 , … m f_i(x),i=0,\dots m fi(x),i=0,m 是一般凸函数。
在某些问题中,目标函数可能是非光滑、不可微的,例如: f ( x ) = max ⁡ 1 ≤ j ≤ p ϕ j ( x ) f(x)=\max\limits_{1 \leq j \leq p} \phi_j(x) f(x)=1jpmaxϕj(x).
对于一般的凸函数,将 d o m f = { x ∈ R n : ∣ f ( x ) ∣ < ∞ } dom f=\{x\in\mathbb{R}^n:|f(x)|< \infty\} domf={xRn:f(x)<}记作函数 f f f的定义域,并且假定 d o m f ≠ ∅ dom f\neq \emptyset domf=

定义:函数 f ( x ) f(x) f(x)称为凸的,如果它的定义域是凸的,并且对于所有的 x , y ∈ d o m f , a ∈ [ 0 , 1 ] x,y \in dom f, a\in[0,1] x,ydomf,a[0,1],下面的不等式成立: f ( a x + ( 1 − a ) y ) ≤ a f ( x ) + ( 1 − a ) f ( y ) f(ax+(1-a)y)\leq af(x)+(1-a)f(y) f(ax+(1a)y)af(x)+(1a)f(y). 如果函数 f f f是凹的,那么 − f -f f是凸的

引理(Jensen 不等式):对于任意的 x 1 , … x m ∈ d o m f x_1,\dots x_m\in dom f x1,xmdomf,以及满足 ∑ i = 1 m a i = 1 , a i ≥ 0 , i = 1 , … m \sum\limits_{i=1}^{m}a_i=1, a_i \geq 0,i=1,\dots m i=1mai=1,ai0,i=1,m,有 f ( ∑ i = 1 m a i x i ) ≤ ∑ i = 1 m a i f ( x i ) f\left(\sum\limits_{i=1}^{m}a_ix_i\right)\leq \sum\limits_{i=1}^{m}a_if(x_i) f(i=1maixi)i=1maif(xi). 其中 点 x = ∑ i = 1 m a i x i x=\sum\limits_{i=1}^{m}a_i x_i x=i=1maixi称为点 x i x_i xi的一个凸组合

证明:可以使用归纳法证明,对于 m + 1 m+1 m+1个点的集合,有 ∑ i = 1 m + 1 a i x i = a 1 x 1 + ( 1 − a 1 ) ∑ i = 1 m β i x i + 1 \sum\limits_{i=1}^{m+1}a_ix_i=a_1x_1+(1-a_1)\sum\limits_{i=1}^{m}\beta_i x_{i+1} i=1m+1aixi=a1x1+(1a1)i=1mβixi+1,其中 β i = a i + 1 1 − a 1 \beta_i=\frac{a_{i+1}}{1-a_1} βi=1a1ai+1,因此 ∑ i = 1 m β i = 1 , β i ≥ 0 , i = 1 , … m \sum\limits_{i=1}^{m}\beta_i=1, \beta_i\geq 0,i=1,\dots m i=1mβi=1,βi0,i=1,m.
因此,可以得到
f ( ∑ i = 1 m + 1 a i x i ) = f ( a 1 x 1 + ( 1 − a 1 ) ∑ i = 1 m β i x i ) ≤ a 1 f ( x 1 ) + ( 1 − a 1 ) f ( ∑ i = 1 m β i x i ) ≤ ∑ i = 1 m + 1 a i f ( x i ) \begin{aligned} &f\left(\sum\limits_{i=1}^{m+1}a_ix_i\right)=f\left(a_1x_1+(1-a_1)\sum\limits_{i=1}^{m}\beta_i x_i\right)\\ &\leq a_1 f(x_1)+(1-a_1)f\left(\sum\limits_{i=1}^{m}\beta_i x_i\right)\\ &\leq \sum\limits_{i=1}^{m+1}a_i f(x_i) \end{aligned} f(i=1m+1aixi)=f(a1x1+(1a1)i=1mβixi)a1f(x1)+(1a1)f(i=1mβixi)i=1m+1aif(xi)

推论:设 x x x是点 x 1 , … , x m x_1,\dots, x_m x1,,xm的一个凸组合,那么 f ( x ) ≤ max ⁡ 1 ≤ i ≤ m f ( x i ) f(x)\leq \max\limits_{1\leq i \leq m}f(x_i) f(x)1immaxf(xi)

证明:根据 Jensen 不等式,并且 a i ≥ 0 , ∑ i = 1 m a i = 1 a_i\geq 0, \sum\limits_{i=1}^{m}a_i=1 ai0,i=1mai=1,得到:
f ( x ) = f ( ∑ i = 1 m a i x i ) ≤ ∑ i = 1 m a i f ( x i ) ≤ max ⁡ 1 ≤ i ≤ m f ( x i ) f(x)=f\left(\sum\limits_{i=1}^{m}a_ix_i\right)\leq \sum\limits_{i=1}^{m}a_if(x_i)\leq \max\limits_{1\leq i \leq m}f(x_i) f(x)=f(i=1maixi)i=1maif(xi)1immaxf(xi).

推论:设 Δ = C o n v { x 1 , … , x m } ≡ { x = ∑ i = 1 m a i x i ∣ a i ≥ 0 , ∑ i = 1 m a i = 1 } \Delta=Conv \{x_1,\dots, x_m\}\equiv \left\{x=\sum\limits_{i=1}^{m}a_ix_i|a_i\geq 0, \sum \limits_{i=1}^{m}a_i=1\right\} Δ=Conv{x1,,xm}{x=i=1maixiai0,i=1mai=1},那么 max ⁡ x ∈ Δ f ( x ) = max ⁡ 1 ≤ i ≤ n f ( x i ) \max\limits_{x\in \Delta} f(x)=\max\limits_{1\leq i \leq n} f(x_i) xΔmaxf(x)=1inmaxf(xi).
定理:函数 f f f是凸的,当且仅当,对于所有满足 y + β ( y − x ) ∈ d o m f y+\beta(y-x)\in dom f y+β(yx)domf x , y ∈ d o m f x,y\in dom f x,ydomf,并且 β ≥ 0 \beta \geq 0 β0,有: f ( y + β ( y − x ) ) ≥ f ( y ) + β ( f ( y ) − f ( x ) ) f(y+\beta(y-x))\geq f(y)+\beta(f(y)-f(x)) f(y+β(yx))f(y)+β(f(y)f(x)).

证明:设 f f f 是凸函数, a = β 1 + β a=\frac{\beta}{1+\beta} a=1+ββ,并且 u = y + β ( y − x ) u=y+\beta(y-x) u=y+β(yx),那么 y = 1 1 + β ( u + β x ) = ( 1 − a ) u + a x y=\frac{1}{1+\beta}(u+\beta x)=(1-a)u+ax y=1+β1(u+βx)=(1a)u+ax. 然后,利用凸函数的属性可以得到:
f ( y ) ≤ ( 1 − a ) f ( u ) + a f ( x ) = 1 1 + β f ( u ) + β 1 + β f ( x ) f(y)\leq (1-a)f(u)+af(x)=\frac{1}{1+\beta}f(u)+\frac{\beta}{1+\beta}f(x) f(y)(1a)f(u)+af(x)=1+β1f(u)+1+ββf(x), 必要性得证。
x , y ∈ d o m f , a ∈ ( 0 , 1 ] , β = 1 − a a , u = a x + ( 1 − a ) y x,y\in dom f, a\in (0,1],\beta=\frac{1-a}{a},u=ax+(1-a)y x,ydomfa(0,1]β=a1au=ax+(1a)y,那么 x = 1 a ( u − ( 1 − a ) y ) = u + β ( u − y ) x=\frac{1}{a}(u-(1-a)y)=u+\beta(u-y) x=a1(u(1a)y)=u+β(uy),因此 f ( x ) ≥ f ( u ) + β ( f ( u ) − f ( y ) ) = 1 a f ( u ) − 1 − a a f ( y ) f(x)\geq f(u)+\beta(f(u)-f(y))=\frac{1}{a}f(u)-\frac{1-a}{a}f(y) f(x)f(u)+β(f(u)f(y))=a1f(u)a1af(y). 因此,函数 f f f满足凸函数的性质,充分性得证。

定理:函数 f f f是凸的,当且仅当它的上境图 e p i ( f ) = { ( x , t ) ∈ d o m f × R ∣ t ≥ f ( x ) } epi(f)=\{(x,t)\in dom f\times \mathbb{R}| t \geq f(x)\} epi(f)={(x,t)domf×Rtf(x)}.

证明:设函数 f f f是凸函数,如果 ( x 1 , t 1 ) ∈ e p i ( f ) (x_1,t_1)\in epi(f) (x1,t1)epi(f),且 ( x 2 , t 2 ) ∈ e p i ( f ) (x_2,t_2)\in epi(f) (x2,t2)epi(f),那么对于任意的 a ∈ [ 0 , 1 ] a\in [0,1] a[0,1]有:
a t 1 + ( 1 − a ) t 2 ≥ a f ( x 1 ) + ( 1 − a ) f ( x 2 ) ≥ f ( a x 1 + ( 1 − a ) x 2 ) at_1+(1-a)t_2\geq af(x_1)+(1-a)f(x_2)\geq f(ax_1+(1-a)x_2) at1+(1a)t2af(x1)+(1a)f(x2)f(ax1+(1a)x2),所以 ( a x 1 + ( 1 − a ) x 2 , a t 1 + ( 1 − a ) t 2 ) ∈ e p i ( f ) (ax_1+(1-a)x_2,at_1+(1-a)t_2)\in epi(f) (ax1+(1a)x2,at1+(1a)t2)epi(f),必要性得证。
e p i ( f ) epi(f) epi(f)是凸的,对于 x 1 , x 2 ∈ d o m f x_1,x_2\in dom f x1,x2domf ( x 1 , f ( x 1 ) ) ∈ e p i ( f ) (x_1,f(x_1))\in epi(f) (x1,f(x1))epi(f), ( x 2 , f ( x 2 ) ) ∈ e p i ( f ) (x_2, f(x_2))\in epi(f) (x2,f(x2))epi(f),利用凸函数的性质, ( a x 1 + ( 1 − a ) x 2 , a f ( x 1 ) + ( 1 − a ) f ( x 2 ) ) ∈ e p i ( f ) (ax_1+(1-a)x_2,af(x_1)+(1-a)f(x_2))\in epi(f) (ax1+(1a)x2,af(x1)+(1a)f(x2))epi(f),根据 e p i ( f ) epi(f) epi(f)的定义,得到 f ( a x 1 + ( 1 − a ) x 2 ) ≤ a f ( x 1 ) + ( 1 − a ) f ( x 2 ) f(ax_1+(1-a)x_2)\leq af(x_1)+(1-a)f(x_2) f(ax1+(1a)x2)af(x1)+(1a)f(x2),所以得到函数 f f f是凸的,充分性得证。

定义:如果函数 f f f的上境图是一个闭集,那么凸函数 f f f称为闭的

定理:如果凸函数 f f f是闭的,那么所有它的层集要么是空的,要么是闭的

证明:在凸优化简介13中有个类似的定理,在这里,根据定义, ( L f ( β ) , β ) = e p i ( f ) ∩ { ( x , t ) ∣ t = β } (\mathfrak{L}_f(\beta),\beta)=epi(f)\cap\{(x,t)|t=\beta\} (Lf(β),β)=epi(f){(x,t)t=β},因此,作为两个闭凸集的交集, ( L f ( β ) , β ) (\mathfrak{L}_f(\beta),\beta) (Lf(β),β)是闭和凸的,因此投影 L f ( β ) \mathfrak{L}_f(\beta) Lf(β)也是闭和凸的。
如果函数 f f f是凸的连续函数,且它的 d o m f dom f domf是闭的,那么 f f f是闭合的,但是一个闭的凸函数不一定是连续的。
下面是凸函数的例子:
1. 线性函数是闭和凸的;
2. f ( x ) = ∣ x ∣ , x ∈ R 1 f(x)=|x|, x\in \mathbb{R}^1 f(x)=x,xR1 是闭和凸的,因为它的上境图 { ( x , t ) ∣ t ≥ x 且 t ≥ − x } \{(x,t)|t \geq x 且 t \geq -x\} {(x,t)txtx}. 是两个闭凸集的交集;
3. 所有在 R n \mathbb{R}^n Rn上可微的凸的函数属于一般闭凸函数类;
4. 函数 f ( x ) = 1 x , x > 0 f(x)=\frac{1}{x}, x> 0 f(x)=x1,x>0是凸和闭的,然而它的域 d o m f = i n t R + 1 dom f=int \mathbb{R}^1_+ domf=intR+1是开的;
5. 函数 f ( x ) = ∥ x ∥ f(x)=\|x\| f(x)=x,其中 ∥ ⋅ ∥ \|\cdot\| 是任意的范数,是闭和凸的,对于任意的 x 1 , x 2 ∈ R n x_1,x_2\in \mathbb{R}^n x1,x2Rn a ∈ [ 0 , 1 ] a\in [0,1] a[0,1] f ( a x 1 + ( 1 − a ) x 2 ) = ∥ a x 1 + ( 1 − a ) x 2 ∥ ≤ ∥ a x 1 ∥ + ∥ ( 1 − a ) ∥ x 2 = a ∥ x 1 ∥ + ( 1 − a ) ∥ x 2 ∥ f(ax_1+(1-a)x_2)=\|ax_1+(1-a)x_2\|\\ \leq \|ax_1\|+\|(1-a)\|x_2\\ =a\|x_1\|+(1-a)\|x_2\| f(ax1+(1a)x2)=ax1+(1a)x2ax1+(1a)x2=ax1+(1a)x2.
l p \mathfrak{l}_p lp范数的定义为 ∥ x ∥ p = [ ∑ i = 1 n ∣ x ( i ) ∣ p ] 1 / p , p ≥ 1 \|x\|_p=\left[\sum\limits_{i=1}^{n}|x^{(i)}|^p\right]^{1/p}, p\geq 1 xp=[i=1nx(i)p]1/p,p1,常用的范数为:

  • 欧式范数: ∥ x ∥ = [ ∑ i = 1 n ( x ( i ) ) 2 ] 1 / 2 , p = 2 \|x\|=\left[\sum\limits_{i=1}^{n}(x^{(i)})^2\right]^{1/2},p=2 x=[i=1n(x(i))2]1/2,p=2;
  • l 1 l_1 l1范数 : ∥ x ∥ 1 = ∑ i = 1 n ∣ x ( i ) ∣ , p = 1 \|x\|_1=\sum\limits_{i=1}^{n}|x^{(i)}|,p=1 x1=i=1nx(i),p=1
  • l ∞ l_{\infty} l范数: ∥ x ∥ ∞ = max ⁡ 1 ≤ i ≤ n ∣ x ( i ) ∣ \|x\|_{\infty}=\max\limits_{1\leq i \leq n}|x^{(i)}| x=1inmaxx(i).

任意范数定义一系列的球, B ∥ ⋅ ∥ ( x 0 , r ) = { x ∈ R n ∣ ∥ x − x 0 ∥ ≤ r } , r ≥ 0 B_{\|\cdot\|}(x_0,r)=\{x\in \mathbb{R}^n|\|x-x_0\|\leq r\}, r\geq 0 B(x0,r)={xRnxx0r},r0,其中 r r r是一个球的半径,且 x 0 ∈ R n x_0\in \mathbb{R}^n x0Rn是它的中心,我们称球 B ∥ ⋅ ∥ ( 0 , 1 ) B_{\|\cdot\|}(0,1) B(0,1)为范数 ∥ ⋅ ∥ \|\cdot\| 的单位球,显然,这些球是凸集。对于半径 r r r l p l_p lp球,使用记号 B p ( x 0 , r ) = { x ∈ R n ∣ ∥ x − x 0 ∥ p ≤ r } B_p(x_0,r)=\{x\in \mathbb{R}^n|\|x-x_0\|_p\leq r\} Bp(x0,r)={xRnxx0pr}. 下面是一个欧式球与 l 1 l_1 l1球的关系: B 1 ( x 0 , r ) ⊂ B 2 ( x 0 , r ) ⊂ B 1 ( x 0 , r n ) B_1(x_0,r)\subset B_2(x_0,r)\subset B_1(x_0,r\sqrt{n}) B1(x0,r)B2(x0,r)B1(x0,rn ).
考虑函数 f ( x , y ) = { 0 , i f   x 2 + y 2 < 1 , ϕ ( x , y ) , i f   x 2 + y 2 = 1. f(x,y)=\left\{\begin{aligned} &0, &if \ x^2+y^2 < 1,\\ &\phi(x,y), & if\ x^2+y^2=1. \end{aligned} \right. f(x,y)={0,ϕ(x,y),if x2+y2<1,if x2+y2=1.
其中 ϕ ( x , y ) \phi(x,y) ϕ(x,y)是一个定义在单位圆上的任意的非负函数,函数的域是单位的欧式圆盘,是闭且凸的。但是在域的边界上,函数 f f f没有合理的属性,因此 f ( x , y ) f(x,y) f(x,y)不是闭的,除非 ϕ ( x , y ) ≡ 0 \phi(x,y)\equiv0 ϕ(x,y)0.

下半连续性(Lower semi-continuity): 函数 f f f如果对于一个序列 { x k } \{x_k\} {xk}收敛到 x ˉ \bar{x} xˉ lim ⁡ k → ∞ i n f f ( x k ) ≥ f ( x ˉ ) \lim\limits_{k\rightarrow\infty}inf f(x_k)\geq f(\bar{x}) kliminff(xk)f(xˉ),称函数 f f f在给定的向量 x ˉ \bar{x} xˉ是下半连续的。

定理:对于函数 f : R n → R ∪ { − ∞ , + ∞ } f:\mathbb{R}^n\rightarrow\mathbb{R}\cup\{-\infty,+\infty\} f:RnR{,+},下面的表述是等价的:(1) f f f是闭的;(2) f f f的所有的层集都是闭的;(3) f f f R n \mathbb{R}^n Rn上是下半连续的

定理:设函数 f 1 f_1 f1和函数 f 2 f_2 f2是闭和凸的,令 β ≥ 0 \beta\geq 0 β0,那么下面所有的函数是闭和凸的:

  • f ( x ) = β f 1 ( x ) , d o m f = d o m f 1 f(x)=\beta f_1(x), dom f=dom f_1 f(x)=βf1(x),domf=domf1;
  • f ( x ) = f 1 ( x ) + f 2 ( x ) , d o m f = ( d o m f 1 ) ∩ ( d o m f 2 ) f(x)=f_1(x)+f_2(x),dom f=(dom f_1)\cap(dom f_2) f(x)=f1(x)+f2(x),domf=(domf1)(domf2);
  • f ( x ) = m a x { f 1 ( x ) , f 2 ( x ) } , d o m f = ( d o m f 1 ) ∩ ( d o m f 2 ) f(x)=max\{f_1(x),f_2(x)\}, dom f=(dom f_1)\cap (dom f_2) f(x)=max{f1(x),f2(x)},domf=(domf1)(domf2).

证明1:利用凸函数的性质可以得到 f ( a x 1 + ( 1 − a ) x 2 ) = β f 1 ( a x 1 + ( 1 − a ) x 2 ) ≤ β ( a f 1 ( x 1 ) + ( 1 − a ) f 1 ( x 2 ) ) f(ax_1+(1-a)x_2)=\beta f_1(ax_1+(1-a)x_2)\leq \beta(af_1(x_1)+(1-a)f_1(x_2)) f(ax1+(1a)x2)=βf1(ax1+(1a)x2)β(af1(x1)+(1a)f1(x2)).
证明2:对于所有的 x 1 , x 2 ∈ ( d o m f 1 ) ∩ ( d o m f 2 ) x_1,x_2\in (dom f_1)\cap(dom f_2) x1,x2(domf1)(domf2),且 a ∈ [ 0 , 1 ] a\in [0,1] a[0,1],有:
f 1 ( a x 1 + ( 1 − a ) x 2 ) + f 2 ( a x 1 + ( 1 − a ) x 2 ) ≤ a f 1 ( x 1 ) + ( 1 − a ) f 1 ( x 2 ) + a f 2 ( x 1 ) + ( 1 − a ) f 2 ( x 2 ) = a ( f 1 ( x 1 ) + f 2 ( x 1 ) ) + ( 1 − a ) ( f 1 ( x 2 ) + f 2 ( x 2 ) ) \begin{aligned} &f_1(ax_1+(1-a)x_2)+f_2(ax_1+(1-a)x_2)\\ &\leq af_1(x_1)+(1-a)f_1(x_2)+af_2(x_1)+(1-a)f_2(x_2)\\ &=a(f_1(x_1)+f_2(x_1))+(1-a)(f_1(x_2)+f_2(x_2)) \end{aligned} f1(ax1+(1a)x2)+f2(ax1+(1a)x2)af1(x1)+(1a)f1(x2)+af2(x1)+(1a)f2(x2)=a(f1(x1)+f2(x1))+(1a)(f1(x2)+f2(x2))
因此, f ( x ) f(x) f(x)是凸的。考虑序列 { ( x k , t k ) } ⊂ e p i ( f ) \{(x_k,t_k)\}\subset epi(f) {(xk,tk)}epi(f) t k ≥ f 1 ( x k ) + f 2 ( x k ) , lim ⁡ k → ∞ x k = x ˉ ∈ d o m f , lim ⁡ k → ∞ t k = t ˉ t_k\geq f_1(x_k)+f_2(x_k),\lim\limits_{k\rightarrow\infty}x_k=\bar{x}\in dom f, \lim\limits_{k\rightarrow\infty} t_k=\bar{t} tkf1(xk)+f2(xk),klimxk=xˉdomf,klimtk=tˉ. 因为 f 1 f_1 f1 f 2 f_2 f2都是闭的,根据下半连续性,得到 lim ⁡ k → ∞ i n f f 1 ( x k ) ≥ f 1 ( x ˉ ) \lim\limits_{k\rightarrow \infty}inf f_1(x_k)\geq f_1(\bar{x}) kliminff1(xk)f1(xˉ), lim ⁡ k → ∞ i n f f 2 ( x k ) ≥ f 2 ( x ˉ ) \lim\limits_{k\rightarrow\infty}inf f_2(x_k)\geq f_2(\bar{x}) kliminff2(xk)f2(xˉ)。因为 t ˉ = lim ⁡ k → ∞ t k ≥ lim ⁡ k → ∞ i n f f 1 ( x k ) + lim ⁡ k → ∞ i n f f 2 ( x k ) ≥ f ( x ˉ ) \bar{t}=\lim\limits_{k\rightarrow \infty}t_k\geq \lim\limits_{k\rightarrow \infty}inf f_1(x_k)+\lim\limits_{k\rightarrow \infty}inf f_2(x_k)\geq f(\bar{x}) tˉ=klimtkkliminff1(xk)+kliminff2(xk)f(xˉ) 使得 ( x ˉ , t ˉ ∈ e p i   f ) (\bar{x},\bar{t}\in epi \ f) (xˉ,tˉepi f),集合内任意序列的极限点也在集合内,因此为闭集。
证明3:函数 f f f的上境图为 e p i   f = { ( x , t ) ∣ t ≥ f 1 ( x ) , t ≥ f 2 ( x ) , x ∈ ( d o m f 1 ∩ d o m f 2 ) } = e p i   f 1 ∩ e p i   f 2 epi\ f=\{(x,t)|t\geq f_1(x), t\geq f_2(x),x\in (dom f_1\cap dom f_2)\}=epi\ f_1\cap epi\ f_2 epi f={(x,t)tf1(x),tf2(x),x(domf1domf2)}=epi f1epi f2。因此 e p i   f epi\ f epi f是两个闭凸集的交集,因此 e p i f epi f epif是闭和凸的。根据前面的定理可以得到函数 f f f是闭且凸的。

定理:设函数 ϕ ( y ) , y ∈ R m \phi(y),y\in \mathbb{R}^m ϕ(y),yRm是闭且凸的,考虑线性算子: A ( x ) = A x + b : R n → R m \mathfrak{A}(x)=Ax+b:\mathbb{R}^n\rightarrow \mathbb{R}^m A(x)=Ax+bRnRm,那么 f ( x ) = ϕ ( A ( x ) ) f(x)=\phi(\mathfrak{A}(x)) f(x)=ϕ(A(x))是一个闭且凸的函数,其域为 d o m   f = { x ∈ R n ∣ A ( x ) ∈ d o m   ϕ } dom\ f=\{x\in \mathbb{R}^n|\mathfrak{A}(x)\in dom\ \phi\} dom f={xRnA(x)dom ϕ}.

证明:对于来自 d o m f dom f domf x 1 x_1 x1 x 2 x_2 x2,记 y 1 = A ( x 1 ) , y 2 = A ( y 2 ) y_1=\mathfrak{A}(x_1),y_2=\mathfrak{A}(y_2) y1=A(x1)y2=A(y2),那么,对于 a ∈ [ 0 , 1 ] a\in [0,1] a[0,1],有 f ( a x 1 + ( 1 − a ) x 2 ) = ϕ ( A ( a x 1 + ( 1 − a ) x 2 ) ) = ϕ ( a y 1 + ( 1 − a ) y 2 ) ≤ a ϕ ( y 1 ) + ( 1 − a ) ϕ ( y 2 ) = a f ( x 1 ) + ( 1 − a ) f ( x 2 ) f(ax_1+(1-a)x_2)=\phi(\mathfrak{A}(ax_1+(1-a)x_2))\\ =\phi(ay_1+(1-a)y_2)\\ \leq a\phi(y_1)+(1-a)\phi(y_2)\\ =af(x_1)+(1-a)f(x_2) f(ax1+(1a)x2)=ϕ(A(ax1+(1a)x2))=ϕ(ay1+(1a)y2)aϕ(y1)+(1a)ϕ(y2)=af(x1)+(1a)f(x2),因此, f ( x ) f(x) f(x)是凸的,因为线性算子是连续的,所以是闭的。

定理:设 Δ \Delta Δ是某个集合,且 f ( x ) = sup ⁡ y { ϕ ( y , x ) ∣ y ∈ Δ } f(x)=\sup\limits_{y}\{\phi(y,x)|y\in \Delta\} f(x)=ysup{ϕ(y,x)yΔ},假定对于任意固定的 y ∈ Δ y\in \Delta yΔ,函数 ϕ ( y , x ) \phi(y,x) ϕ(y,x)是闭和凸的,那么 f ( x ) f(x) f(x)是闭和凸的函数,域为 d o m   f = { x ∈ ∩ y ∈ Δ d o m ϕ ( y , ⋅ ) ∣ ∃ γ : ϕ ( y , x ) ≤ γ , ∀ y ∈ Δ } dom\ f=\{x\in \cap_{y\in \Delta} dom \phi(y,\cdot)|\exist\gamma: \phi(y,x)\leq \gamma, \forall y\in \Delta\} dom f={xyΔdomϕ(y,)γ:ϕ(y,x)γ,yΔ}.

证明: ( x , t ) ∈ e p i    f (x,t)\in epi \ \ f (x,t)epi  f 当且仅当,对于所有的 y ∈ Δ y \in \Delta yΔ,有 x ∈ d o m ϕ ( y , ⋅ ) , t ≥ ϕ ( y , x ) x\in dom \phi(y,\cdot), t\geq \phi(y,x) xdomϕ(y,),tϕ(y,x),这表明 e p i   f = ∩ y ∈ Δ e p i ϕ ( y , ⋅ ) epi\ f=\cap_{y\in \Delta}epi\phi(y,\cdot) epi f=yΔepiϕ(y,)。因为每个 e p i ϕ ( y , ⋅ ) epi\phi(y,\cdot) epiϕ(y,)是凸和闭的,因此 f f f是凸和闭的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值