漫步凸分析七——凸函数闭包

线性函数的凸性是代数性质(线性)的结果,而对于凸函数,事情就没那么简单了,但是凸函数本身依然有许多拓扑性质,通过将凸集的闭包和相对内点理论应用到凸函数的上境图或水平集上可以推出这些结论。有一个基本的结论就是下半连续是凸函数建设性的属性,也就是说有一个闭包运算,通过将任意正常凸函数重新定义在其有效定义域的某些相对内点上,就能令该函数变成下半连续的,我们会在下面给予证明。

对于集合S\subset R^n上定义的扩展实函数f,如果对于每个S中的序列x_1,x_2,\ldots,其中x_i收敛到x并且f(x_1),f(x_2),\ldots的极限在[-\infty,+\infty]上存在,使得
f(x)\leq\lim_{i\to\infty}f(x_i)

成立,那么就说f在点x处是下半连续的。这个条件可能表示成:
f(x)=\lim_{y\to x}\inf f(y)=\lim_{\varepsilon\downarrow0}(\inf\{f(y)||y-x|\leq\varepsilon\})

同样的,如果
f(x)=\lim_{y\to x}\sup f(y)=\lim_{\varepsilon\downarrow0}(\sup\{f(y)||y-x|\leq\varepsilon\})

那么我们说f是上半连续的。当函数在点x处既是上半连续又是下半连续时,就得到我们常说的函数在点x处连续。

从下面的结论中就可以很明显地看出下半连续在凸函数研究中的重要性。

\textbf{定理7.1}f是从R^n[-\infty,+\infty]的任意函数,那么下面的条件是等价的:

  1. fR^n上是下半连续的;
  2. 对于每个\alpha\in R,\{x|f(x)\leq\alpha\} 是闭的;
  3. f的上境图是R^{n+1}中的闭集

\textbf{证明:}x处下半连续可以表示成另一个条件,即对于每个i,使得\mu_i\geq f(x_i)的序列\mu_1,\mu_2,\ldots,x_1,x_2,\ldots\mu=\lim\mu_i,x=\lim x_i时,不等式\mu\geq f(x)成立。而这个条件与(c)是一样的,还暗含(b)(取\alpha=\mu=\mu_1=\mu_2=\cdots)。另一方面,假设(b)成立,假设x_i收敛到xf(x_i)收敛到\mu,对于每个实数\alpha>\muf(x_i)肯定小于\alpha,于是
x\in\text{cl}\{y|f(y)\leq\alpha\}=\{y|f(y)\leq\alpha\}

所以f(x)\leq\mu,这就表明(b)暗含(a)||

给定任意R^n上的函数,存在一个由f主导的最大下半连续函数(不必是有限的),即该函数的上境图是f上境图在R^{n+1} 中闭包。通常情况下,这个函数称作f的下半连续包。

如果凸函数f不存在-\infty的值,那么将其闭包定义为f的下半连续包。如果f是不正常凸函数即存在x使得f(x)=-\infty,那么f的闭包就定义成常函数-\infty。 无论哪种方式,f的闭包是另一个凸函数;用\text{cl}\ f表示。(\text{cl}\ f定义中例外情况是为了在f为不正常时定理12.2中f^{**}=\text{cl}\ f依然成立)

对于凸函数f,如果\text{cl}\ f=f,那么我们说该函数是闭的,对于正常凸函数,它的闭与下半连续函数是一样的,但是闭的不正常函数是常函数+\infty,-\infty

如果f\text{dom}\ f为闭的正常凸函数且f相对于\text{dom}\ f是连续的,那么利用定理7.1的准则(b)可知f是闭的。然而,某些凸函数在其有效定义域不是闭的情况下也可以是闭的,例如R上的函数f(x)=1/x,x>0,而x\leq 0时,f(x)=\infty

假设f是正常凸函数,那么按照定义
\text{epi}(\text{cl}\ f)=\text{cl}(\text{epi}\ f)

利用这个公式以及定理7.1的证明可知\text{cl}\ f可以表示成
(\text{cl}\ f)(x)=\lim_{y\to x}\inf f(y)

或者,(\text{cl}\ f)(x)可以看成\mu的下确界,其中x属于\text{cl}\{x|f(x)\leq\mu\},所以
\{x|(\text{cl}\ f)(x)\leq\alpha\}=\cap_{\mu>\alpha}\text{cl}\{x|f(x)\leq\mu\}

\text{cl}\ f\leq f,f_1\leq f_2时,\text{cl}\ f_1\leq\text{cl}\ f_2,很明显函数f,\text{cl}\ fR^n上有相同的下确界。

为了更好的理解闭包运算,考虑R上的凸函数fx>0f(x)=0x\leq0时,f(x)=\infty,此时除了原点是0 而不是+\infty 外,\text{cl}\ ff是一致的。对于另一个例子,取R^2上的圆盘C,在C的内点中f(x)=0,而C外面的f(x)=+\inftyC的边界上f(x)[0,\infty]区间的任意值,那么fR^n上的正常凸函数,fC边界上的闭包为0。

这些例子表明闭包运算是进行合理的规范,也就是通过在不连续点处重新定义数值,使得凸函数更加有规律。这就是该运算在理论和实践中非常有用的秘诀,不失一般性,基于此我们可以将给定的情况简化成凸函数是闭的情况,然后这个函数就有定理7.1中那三个非常重要的性质。

我们现在详细比较一般情况下的\text{cl}\ ff,最好先处理不正常凸函数,为此我们需要下面的事实。

\textbf{定理7.2} 如果f是不正常凸函数,那么对于每个x\in\text{ri}(\text{dom}\ f),f(x)=-\infty。所以除了不正常凸函数有效定义域的相对边界点外,它的值是无限的。

\textbf{证明:}如果f的有效定义域包含所有点,那么它就包含6yv f 值为-\infty 的点。令u是这样的一个点,x\in\text{ri}(\text{dom}\ f),根据定理6.4,存在\mu>1使得y\in\text{dom}\ f,其中y=(1-\mu)u+\mu x,我们有x=(1-\lambda)u+\lambda y,其中0<\lambda=\mu^{-1}<1。因此根据定理4.2,对于任意的\alpha>f(u),\beta>f(y)
f(x)=f((1-\lambda)u+\lambda y)<(1-\lambda)\alpha+\lambda\beta

因为f(u)=-\infty,f(y)<+\infty,所以f(x)肯定是-\infty||

\textbf{推论7.2.1} 下半连续不正常凸函数没有有限值。

\textbf{证明:}根据下半连续,f(x)=-\infty的点x集合肯定包含\text{cl}(\text{ri}(\text{dom}\ f)),并且根据定理6.3
\text{cl}(\text{ri}(\text{dom}\ f))=\text{cl}(\text{dom}\ f)\supset\text{dom}\ f

证毕。||

\textbf{推论7.2.2}f是不正常凸函数,那么\text{cl}\ f是闭不正常凸函数且在\text{ri}(\text{dom}\ f)上和f一致。

通过这些结果,某些地方取值-\infty的凸函数f闭包和f的下半连续包\bar f差别不是很大。事实上,\bar f(x)\text{cl}(\text{dom}\ f) 上是-\infty,在\text{cl}(\text{dom}\ f)外是+\infty,而(\text{cl}\ f)(x)到处都是-\infty

我们现在指出定理7.2的另一个结论,不过它与本文的主题(下半连续)没有关系。

\textbf{推论7.2.3} 如果f是凸函数,其有效定义域是相对开的(例如\text{dom}\ f=R^n),那么对于所有的x,要么f(x)>-\infty,要么f(x)是无限的。

作为这个推论典型的应用,考虑R^2上的任意有限凸函数f,函数
g(\xi_1)=\inf_{\xi_2}f(\xi_1,\xi_2)

是凸的(参看定理5.7后面的讨论)并且它的有效定义域是R。 我们可能得出对于每个\xi_1,下确界是有限的或者是-\infty,所以,如果f沿着平行\xi_2轴方向是有界的,那么对于所有这样的直线它都是有界的。

R^n中凸集最重要的拓扑性质是其闭包和相对内点之间的紧密关系,因为对正常凸函数f求闭相当于对\text{epi}\ f 求闭,\text{epi}\ f的相对内点在\text{cl}\ f的分析中是非常重要的。

\textbf{引理7.3} 对于任意凸函数f\text{ri}(\text{epi}\ f)(x,\mu)组成,其中x\in\text{ri}(\text{dom}\ f),f(x)<\mu<\infty

\textbf{证明:}这个结果是定理6.8的特殊情况,我们令m=n,p=1,C=\text{epi}\ f,那么根据定理6.4和6.1很容易推出结果。然而,我们这里用另一种证明方法,它将说明
\text{int}(\text{epi}\ f)=\{(x,\mu)|x\in\text{int}(\text{dom}\ f),f(x)<\mu<\infty\}

关系\subset非常明显,所以只需要验证\supset即可。令\bar{x}\in\text{int}(\text{dom}\ f)并且\bar{\mu}是使得\bar{\mu}>f(\bar{x})的实数,令a_1,\ldots,a_r是使得\bar{x}\in\text{int}\ P\text{dom}\ P中的点,其中
P=\text{conv}\{a_1,\ldots,a_r\}

并且令
\alpha=\max\{f(a_i)|i=1,\ldots,r\}

给定任意的x\in P,我们可以将x表示成凸组合
x=\lambda_1a_1+\cdots+\lambda_ra_r,\quad\lambda_i\geq0,\quad\lambda_1+\cdots+\lambda_r=1

那么
f(x)\leq\lambda_1f_1(a_1)+\cdots+\lambda_rf_r(a_r)\leq(\lambda_1+\cdots+\lambda_r)\alpha=\alpha

因此开集
\{(x,\mu)|x\in\text{int}\ P,\alpha<\mu<\infty\}

包含在\text{epi}\ f。特别地,对于每个\mu>\alpha我们有
(\bar{x},\mu)\in\text{int}(\text{epi}\ f)

(\bar{x},\bar{\mu})可以看成是\text{epi}\ f中与\text{int}(\text{epi}\ f)有交点的垂直线段的相对内点,根据定理6.1,这就表明
(\bar{x},\bar{\mu})\in\text{int}(\text{epi}\ f)

证毕。||

\textbf{推论7.3.1}\alpha是实数,f是凸函数,使得对某些x,f(x)<\alpha,那么对某些x\in\text{ri}(\text{dom}\ f),f(x)<\alpha

\textbf{证明:}如果R^{n+1}中的开半空间\{(x,\mu)|x\in R^n,\mu<\alpha\}\text{epi}\ f有交点,那么它也一定与\text{ri}(\text{epi}\ f) 有交点(推论6.3.2)。||

\textbf{推论7.3.2}f是凸函数,C是使得\text{ri}\ C\subset\text{dom}\ f的凸集,令\alpha是一个实数值,它使得对某些x\in\text{cl}\ C,f(x)<\alpha,那么对某些x\in\text{ri}\ C,f(x)<\alpha

\textbf{证明:}x\in\text{cl}\ C时,令g(x)=f(x),当x\notin\text{cl}\ C 时,令g(x)=+\infty,那么
\text{ri}\ C\subset\text{dom}\ g\subset\text{cl}\ C

于是\text{ri}(\text{dom}\ g)=\text{ri}\ C。根据假设,有一个x使得g(x)<\alpha,那么根据前面的推论,对于某些x\in\text{ri}(\text{dom}\ g),g(x)<\alpha,换句话说,对某些x\in\text{ri}\ C,f(x)<\alpha||

\textbf{推论7.3.3}fR^n上的凸函数,C是凸集且函数在该集合上是有限的,如果对于每个x\in C,f(x)\geq\alpha,那么对于每个x\in\text{cl}\ C,f(x)\geq\alpha

\textbf{证明:}根据前面的推论可以看出这个推论是显然的。||

引理7.3的另一个结论是凸函数f的闭包完全由\text{ri}(\text{dom}\ f)里的值确定。

\textbf{推论7.3.4} 如果f,gR^n上的凸函数,使得
\text{ri}(\text{dom}\ f)=\text{ri}(\text{dom}\ g)

并且f,g在上面的集合上是一样,那么\text{cl}\ f=\text{cl}\ g

\textbf{证明:}假设表明
\text{ri}(\text{epi}\ f)=\text{ri}(\text{epi}\ g)

于是根据定理6.3可得
\text{cl}(\text{epi}\ f)=\text{cl}(\text{epi}\ g)

这个关系准确的说明了\text{cl}\ f=\text{cl}\ g,至少在f,g是正常的情况下。当不是正常函数时,可以从定理7.2得出结论。||

关于\text{cl}\ f最重要的定理如下所述。

\textbf{定理7.4}fR^n上的正常凸函数,那么\text{cl}\ f 是闭的正常凸函数,此外,\text{cl}\ ff除了在\text{dom}\ f的相对边界点上可能不一样外,其余地方是一致的。

\textbf{证明:}因为\text{epi}(\text{cl}\ f)=\text{cl}(\text{epi}\ f)并且\text{epi}\ f是凸的,所以\text{epi}(\text{cl}\ f)R^{n+1}上闭的凸集且\text{cl}\ f是下半连续凸函数。因为f\text{dom}\ f上是有限的,所以根据推论7.2.1可知\text{cl}\ f也是闭的。任意给定x\in\text{ri}(\text{epi}\ f),考虑垂直线M=\{(x,\mu)|\mu\in R\},根据因此7.3,这个M\text{ri}(\text{epi}\ f)有交点,于是根据推论6.5.1(或者根据定理6.1)
M\cap\text{cl}(\text{epi}\ f)=\text{cl}(M\cap\text{epi}\ f)=M\cap\text{epi}\ f

这就表明(\text{cl}\ f)(x)=f(x),接下来假设x\notin\text{cl}(\text{dom}\ f),从\text{cl}\ f\lim\ \inf公式我们有
\text{cl}(\text{dom}\ f)\supset\text{dom}(\text{cl}\ f)\supset\text{dom}\ f

于是(\text{cl}\ f)(x)=\infty=f(x)||

\textbf{推论7.4.1} 如果f是凸函数,那么\text{dom}(\text{cl}\ f)\text{dom}\ f至多相差\text{dom}\ f的相对边界,特别地,\text{dom}(\text{cl}\ f)\text{dom}\ f有相同的闭包和相对内点,以及相同的维数。

\textbf{推论7.4.2} 如果f是正常凸函数,使得\text{dom}\ f是一个仿射集(尤其是如果fR^n上是有限的,那么这个结论肯定是真),那么f是闭的。

\textbf{证明:}这里\text{dom}\ f没有相对边界点,所以\text{cl}\ ff处处相等。||

定理7.2和7.4表明凸集f一直是下半连续的,除了\text{dom}\ f的相对边界点外。我们将会在第10节看到f相对于\text{ri}(\text{dom}\ f) 是连续的。

由第5节运算构造的各种凸函数闭包公式佳慧在第9节进行推导。

凸函数闭包运算已经用\lim\ \inf的形式进行了描述,对于从f计算\text{cl}\ f,我们现在展示更简单的极限表示。

\textbf{定理7.5}f是正常的凸函数,x\in\text{ri}(\text{dom}\ f),那么对于每个y
(\text{cl}\ f)(y)=\lim_{\lambda\uparrow 1}f((1-\lambda)x+\lambda y)

(当f是不正常函数且y\in\text{cl}(\text{dom}\ f) 时,该公式依然成立)

\textbf{证明:}因为\text{cl}\ f是下半连续的且\text{cl}\leq f,所以我们有
(\text{cl}\ f)(y)\leq\lim_{\lambda\uparrow 1}\inf f((1-\lambda)x+\lambda y)

由此我们只需要说明
(\text{cl}\ f)(y)\geq\lim_{\lambda\uparrow 1}\sup f((1-\lambda)x+\lambda y)

假设\beta是任意实数,使得\beta\geq(\text{cl}\ f)(y),取任意\alpha>f(x)的实数,那么
(y,\beta)\in\text{epi}(\text{cl}\ f)=\text{cl}(\text{epi}\ f)

而根据引理7.3,(x,\alpha)\in\text{ri}(\text{epi}\ f),因此
(1-\lambda)(x,\alpha)+\lambda(y,\beta)\in\text{ri}(\text{epi}\ f),\quad 0\leq\lambda<1

(定理6.1),这样的话
f((1-\lambda)x+\lambda y)<(1-\lambda)\alpha+\beta,\quad 0\leq\lambda<1

于是
\lim_{\lambda\uparrow1}\sup f((1-\lambda)x+\lambda y)\leq\lim_{\lambda\uparrow1}\sup[(1-\lambda)\alpha+\lambda\beta]=\beta

这就是我们要的结论。当f是不正常函数且y\in\text{dom}\ f时该公式依然成立,因为根据定理6.1和7.2,对于0\leq\lambda<1,f((1-\lambda)x+\lambda y)=-\infty||

\textbf{推论7.5.1} 对于闭的正常凸函数f,对每个x\in\text{dom}\ f,y,我们有
f(y)=\lim_{\lambda\uparrow1}f((1-\lambda)x+\lambda y)

\textbf{证明:}\varphi=f((1-\lambda)x+\lambda y),那么\varphiR上的正常凸函数且\varphi(0)=f(x)<\infty,\varphi(1)=f(y)。而且,根据定理7.1 知\varphi是下半连续的,因为\{\lambda|\varphi(\lambda)\leq\alpha\} 是闭集\{z|f(z)\leq\alpha\}在连续变换\lambda\to(1-\lambda)x+\lambda y=z 下的原像,\varphi的有效定义域是某个区间,如果区间是内点位于0与1 之间,那么根据定理当\lambda\uparrow1\varphi(\lambda)的极限是(\text{cl}\ \varphi)(1)=\varphi(1),否则的话极限和\varphi(1)都是+\infty

定理7.5和推论7.5.1将会在定理10.2和10.3中进行扩展。

有时定理7.5在表明给定函数是凸时非常有用,例如当|x|\leq1f(x)=-(1-|x|^2)^{1/2},当|x|>1f(x)=+\infty(x\in R^n)。f的有效定义域是单位球B=\{x||x|\leq1\},在B的内点上,f的凸性可以利用二阶偏导数条件证明(定理4.5)。因为fB边界上的值是它沿着半径的极限值,那么定理7.5表明f是闭正常凸函数。

在不等式及其他理论中,形如{x|f(x)\leq\alpha}的水平集自然是很重要的,借助于凸函数的闭包运算,整理成这样的闭集合是非常有益的,同样的,这种集合的相对内点也很容易从函数f 本身得到。

\textbf{定理7.6}f是任意正常凸函数,\alpha\in R,\alpha>\inf f,凸水平集\{x|f(x)\leq\alpha\},\{x|f(x)<\alpha\}有相同的闭包和相对内点,即
\{x|\text{cl}\ f(x)\leq\alpha\},\quad \{x\in\text{ri}(\text{dom}\ f)|f(x)<\alpha\}

进一步,他们和\text{dom}\ f(f<script type="math/tex">f</script>)维数相同。

\textbf{证明:}MR^{n+1}中的水平超平面\{(x,\alpha)|x\in R^n\},根据推论7.3.1和引理7.3,M\text{ri}(\text{epi}\ f)相交,我们现在关注
M\cap\text{epi}\ f=\{(x,\alpha)|f(x)\leq\alpha\}

的闭包和相对内点。根据推论6.5.1,他们分别是M\cap\text{cl}(\text{epi}\ f),M\cap\text{ri}(\text{epi}\ f),当然,\text{cl}(\text{epi}\ f)=\text{epi}(\text{cl}\ f),因此
\begin{align*} &\text{cl}\{x|f(x)\leq\alpha\}=\{x|(\text{cl}\ f)(x)\leq\alpha\}\\ &\text{ri}\{x|f(x)\leq\alpha\}=\{x\in\text{ri}(\text{dom}\ f)|f(x)<\alpha\} \end{align*}

该公式表明
\text{ri}\{x|f(x)\leq\alpha\}\subset\{x|f(x)<\alpha\}\subset\{x|f(x)\leq\alpha\}

于是\{x|f(x)<\alpha\}\{x|f(x)\leq\alpha\}有相同的闭包和相对内点(推论6.3.1)。根据定理6.2这些集合的维数是相等的,事实上他们和M\cap\text{ri}(\text{epi}\ f) 的维数一致,而M\cap\text{ri}(\text{epi}\ f)的维数明显小于\text{ri}(\text{epi}\ f),而\text{ri}(\text{epi}\ f)的维数比\text{dom}\ f大。||

\textbf{推论7.6.1} 如果f<script type="math/tex">f</script>是闭的正常凸函数,其有效定义域是相对开的(特别地\text{dom}\ f是一个仿射集),那么对于\inf f<\alpha<+\infty,我们有
\begin{align*} &\text{ri}\{x|f(x)\leq\alpha\}=\{x|f(x)<\alpha\}\\ &\text{cl}\{x|f(x)<\alpha\}=\{x|f(x)\leq\alpha\} \end{align*}

\textbf{证明:}这里\text{cl}\ f=f,\text{ri}(\text{dom}\ f)=\text{dom}\ f||

推论中的关系依赖于f的凸,而不仅仅是水平集的凸。例如,考虑R上的非凸函数
f(x)= \begin{cases} 0&\text{if}\ |x|\leq1\\ 1&\text{if}\ |x|>1 \end{cases}

这个函数的所有水平集\{x|f(x)\leq\alpha\},\{x|f(x)<\alpha\}都是凸的,而且f是下半连续的(根据定理7.1的条件(b))并且它的有效定义域是相对开的,也就是整个R,但是\{x|f(x)<1\}不是\{x|f(x)\leq1\}的相对内点,\{x|f(x)\leq1\}也不是\{x|f(x)<1\}的闭包。

定理7.6和推论7.6.1中所有闭包和相对内点的公式在\alpha<\inf f时也是成立的,因为此时问题中的所有集合是非空的。当\alpha=\inf f时公式可能不成立,因为\{x|f(x)<\alpha\}是空的但\{x|f(x)\leq\alpha\}可能不是空的。

附:文章PDF版本http://pan.baidu.com/s/1i4CjCgP

  • 11
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值