凸优化简介17

本文深入探讨了凸函数的性质,包括凸函数的局部有界性、局部Lipschitz连续性,以及在任何内点的任意方向上的可微性。通过引理和定理的证明,阐述了方向导数的存在性和凸函数的分界面性质,为理解凸优化奠定了理论基础。
摘要由CSDN通过智能技术生成

凸函数的一些性质

引理:设函数 f f f是凸的,且 x 0 ∈ i n t ( d o m f ) x_0\in int(dom f) x0int(domf),那么,在 x 0 x_0 x0点上,函数 f f f是局部有上界的

证明:设 ϵ > 0 \epsilon > 0 ϵ>0,满足 x 0 ± ϵ e i ∈ i n t ( d o m f ) , i = 1 , … , n x_0\pm \epsilon e_i\in int(dom f),i=1,\dots,n x0±ϵeiint(domf),i=1,,n,其中 e i e_i ei R n \mathbb{R}^n Rn的坐标向量,记 Δ = C o n v { x 0 ± ϵ e i , i = 1 , … , n } \Delta=Conv\{x_0\pm \epsilon e_i,i=1,\dots,n\} Δ=Conv{ x0±ϵei,i=1,,n}。设 ϵ ˉ = ϵ n \bar{\epsilon}=\frac{\epsilon}{\sqrt{n}} ϵˉ=n ϵ x = x 0 + ∑ i = 1 n h i e i x=x_0+\sum\limits_{i=1}^{n}h_ie_i x=x0+i=1nhiei, ∑ i = 1 n ( h i ) 2 ≤ ϵ ˉ 2 \sum\limits_{i=1}^{n}(h_i)^2\leq \bar{\epsilon}^2 i=1n(hi)2ϵˉ2。假定 h i ≥ 0 h_i\geq 0 hi0, 使用柯西不等式得到:
β = ∑ i = 1 n h i ≤ n ∑ i = 1 n ( h i ) 2 ≤ ϵ \beta=\sum\limits_{i=1}^{n}h_i\leq \sqrt{n}\sqrt{\sum\limits_{i=1}^{n}(h_i)^2}\leq \epsilon β=i=1nhin i=1n(hi)2 ϵ.
因此,对于 h ˉ i = 1 β h i \bar{h}_i=\frac{1}{\beta}h_i hˉi=β1hi,有 x = x 0 + β ∑ i = 1 n h ˉ i e i = x 0 + β ϵ ∑ i = 1 n h ˉ i ϵ e i = ( 1 − β ϵ ) x 0 + β ϵ ∑ i = 1 n h ˉ i ( x 0 + ϵ e i ) ∈ Δ x=x_0+\beta\sum\limits_{i=1}^{n}\bar{h}_ie_i=x_0+\frac{\beta}{\epsilon}\sum\limits_{i=1}^{n}\bar{h}_i\epsilon e_i=\left(1-\frac{\beta}{\epsilon}\right)x_0+\frac{\beta}{\epsilon}\sum\limits_{i=1}^{n}\bar{h}_i(x_0+\epsilon e_i)\in \Delta x=x0+βi=1nhˉiei=x0+ϵβi=1nhˉiϵei=(1ϵβ)x0+ϵβi=1nhˉi(x0+ϵei)Δ. 因此可以得到 M = max ⁡ x ∈ b o u n d ( x 0 , ϵ ˉ ) f ( x ) ≤ max ⁡ x ∈ Δ f ( x ) = max ⁡ 1 ≤ i ≤ n f ( x 0 + ϵ e i ) M=\max\limits_{x\in bound(x_0,\bar{\epsilon})}f(x)\leq \max\limits_{x\in \Delta}f(x)=\max\limits_{1\leq i \leq n}f(x_0+\epsilon e_i) M=xbound(x0,ϵˉ)maxf(x)xΔmaxf(x)=1inmaxf(x0+ϵei).

定理:设函数 f f f是凸的,且 x 0 ∈ i n t ( d o m f ) x_0\in int(dom f) x0int(domf),那么函数 f f f x 0 x_0 x0上是局部 Lipschitz连续的

证明:设 B 2 ( x 0 , ϵ ) ⊂ d o m f B_2(x_0,\epsilon)\subset dom f B2(x0,ϵ)domf,且 s u p { f ( x ) ∣ x ∈ B 2 ( x ) , ϵ ) } ≤ M sup\{f(x)|x\in B_2(x_),\epsilon)\}\leq M sup{ f(x)xB2(x),ϵ)}M,设 y ∈ B 2 ( x 0 , ϵ ) , y ≠ x 0 y\in B_2(x_0,\epsilon), y\neq x_0 yB2(x0,ϵ),y=x0,记 a = 1 ϵ ∥ y − x 0 ∥ , z = x 0 + 1 a ( y − x 0 ) a=\frac{1}{\epsilon}\|y-x_0\|, z=x_0+\frac{1}{a}(y-x_0) a=ϵ1yx0,z=x0+a1(yx0),因此 ∥ z − x 0 ∥ = 1 a ∥ y − x 0 ∥ = ϵ \|z-x_0\|=\frac{1}{a}\|y-x_0\|=\epsilon zx0=a1yx0=ϵ。构造的 z z z x 0 x_0 x0的邻域内,且 a ≤ 1 , y = a z + ( 1 − a ) x 0 a\leq 1, y=az+(1-a)x_0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值