方向导数和梯度

本文参考于这篇文章。

方向导数 direction derivative

刻画的是多元函数在某一点沿着某一方向的变化率,方向导数越大,沿这个方向的函数值变化越快。
它的定义要用到函数的增量、极限,其实很简单,只是看起来长就显得有点复杂。这里以二元函数为例讲方向导数的定义。
函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0)的邻域 U ( P ) U(P) U(P)有定义,自点 P P P引射线 l l l,x轴正向到 l l l的转角为 φ \varphi φ,设 P ′ ( x 0 + Δ x , y 0 + Δ y ) P'(x_0+\Delta x,y_0+\Delta y) P(x0+Δx,y0+Δy) l l l上一点且 P ′ ∈ U ( P ) P'\in U(P) PU(P)
函数的增量为 f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y o ) f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_o) f(x0+Δx,y0+Δy)f(x0,yo)
两点的距离为 ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho=\sqrt{(\Delta x)^2+(\Delta y)^2} ρ=(Δx)2+(Δy)2
方向导数就定义为 P ′ → P P'\rightarrow P PP时二者的比值:
∂ f ( x , y ) ∂ l = lim ⁡ ρ → 0 增 量 距 离 = lim ⁡ ρ → 0 f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y o ) ( Δ x ) 2 + ( Δ y ) 2 = \frac{\partial f(x,y)}{\partial l}=\lim_{\rho \to 0}\frac{增量}{距离}=\lim_{\rho \to 0}\frac{f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_o)}{\sqrt{(\Delta x)^2+(\Delta y)^2}}= lf(x,y)=ρ0lim

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值