用反向传播学习识别mnist手写数字(mini-batch版)

NN的学习,用了BP高效求梯度
用了mini-batch一次处理一个batch的数据,加快计算

# BP_Study.py
# 反向传播学习,mnist手写数字分类
# 2层网络

import numpy as np
import time
from dataset.mnist import load_mnist
from TwoLayerNet import TwoLayerNet
import matplotlib.pyplot as plt

start = time.clock()

# 读入数据
(x_train, t_train), (x_test, t_test) = \
    load_mnist(normalize=True, one_hot_label=True)

net = TwoLayerNet(input_size=784, hidden_size=50, output_size=10)

iter_num = 10000
# 每个epoch跑max(1, train_size / batch_size)次,这里是600次
# 即每个epoch随机选600个batch, 一个epoch相当于把整个训练数据集遍历一遍
# 共迭代10000次,所以会有50/3=16个epoch,相当于把训练数据集跑了16遍
learning_rate = 0.1
train_size = x_train.shape[0]
batch_size = 100
train_loss_list = []
train_acc_list = []
test_acc_list = []

iter_per_epoch = max(1, train_size / batch_size)
# 每个epoch跑max(1, train_size / batch_size)次,这里是600次
# 即每个epoch随机选600个batch, 一个epoch相当于把整个训练数据集遍历一遍
# 共迭代10000次,所以会有50/3=16个epoch,相当于把训练数据集跑了16遍

for i in range(iter_num):
    batch_mask = np.random.choice(train_size, batch_size)
    x_batch = x_train[batch_mask]
    t_batch = t_train[batch_mask]

    # 反向传播求梯度
    grad = net.gradient(x_batch, t_batch)

    # 更新参数
    for key in ('w1', 'b1', 'w2', 'b2'):
        net.params[key] -= learning_rate * grad[key]

    loss = net.loss(x_batch, t_batch)
    train_loss_list.append(loss)
    # print('loss:' + str(loss))

    if i % iter_per_epoch == 0:
        # 每个epoch计算一次精度,所以总共只计算16次
        train_acc = net.accuracy(x_train, t_train)
        test_acc = net.accuracy(x_test, t_test)
        train_acc_list.append(train_acc)
        test_acc_list.append(test_acc)
        print('train_acc,test_acc |' + str(train_acc) + ',' + str(test_acc))

# 画损失函数的变化
x1 = np.arange(len(train_loss_list))
ax1 = plt.subplot(211)
plt.plot(x1, train_loss_list)
plt.xlabel("iteration")
plt.ylabel("loss")

# 画训练精度,测试精度随着epoch的变化
markers = {'train': 'o', 'test': 's'}
x2 = np.arange(len(train_acc_list))
ax2 = plt.subplot(212)
plt.plot(x2, train_acc_list, label='train acc')
plt.plot(x2, test_acc_list, label='test acc', linestyle='--')
plt.xlabel("epochs")
plt.ylabel("accuracy")
plt.ylim(0, 1.0)
plt.legend(loc='lower right')
plt.show()

end = time.clock()
print('Running Time: %s Seconds' %(end - start))
train_acc,test_acc |0.08986666666666666,0.0939
train_acc,test_acc |0.8999166666666667,0.9023
train_acc,test_acc |0.9235166666666667,0.9266
train_acc,test_acc |0.9342833333333334,0.9339
train_acc,test_acc |0.9443333333333334,0.9433
train_acc,test_acc |0.94995,0.9489
train_acc,test_acc |0.9556,0.9524
train_acc,test_acc |0.95845,0.9534
train_acc,test_acc |0.9624666666666667,0.9559
train_acc,test_acc |0.9648166666666667,0.959
train_acc,test_acc |0.96855,0.9621
train_acc,test_acc |0.96985,0.9632
train_acc,test_acc |0.9728333333333333,0.9655
train_acc,test_acc |0.9748166666666667,0.9679
train_acc,test_acc |0.9748166666666667,0.9657
train_acc,test_acc |0.9781166666666666,0.9691
train_acc,test_acc |0.9785,0.9687
Running Time: 91.28648850219648 Seconds

在这里插入图片描述
可以看到损失很快下去了,而训练精度和测试精度一直都在上升,说明 NN在有效学习

# BackPropagation.py
# relu层,sigmoid,Affine层,softmaxwithloss层的类
import numpy as np


class Relu:
    def __init__(self):
        self.mask = None

    # 前向传播的计算
    def forward(self, x):
        self.mask = (x <= 0)
        out = x.copy()  # out就等于x
        out[self.mask] = 0

        return out

    # 反向传播的计算
    def backward(self, dout):
        dout[self.mask] = 0
        dx = dout

        return dx


class Sigmoid:
    def __init__(self):
        self.out = None

    def forward(self, x):
        out = 1 / 1 + np.exp(-x)
        self.out = out

        return out

    def backward(self, dout):
        dx = dout * self.out * (1 - self.out)

        return dx


class Affine:
    def __init__(self, w, b):
        self.w = w
        self.b = b
        self.x = None
        self.dw = None
        self.db = None

    def forward(self, x):
        self.x = x
        out = np.dot(self.x, self.w) + self.b
        # 上面表达式使用了numpy数组的广播功能
        # affine1层的np.dot(self.x, self.w)是(100,50)
        # 而self.b是(50,)的行向量
        # 则np.dot(self.x, self.w)的每一行都要加上self.b
  
        return out

    def backward(self, dout):
        dx = np.dot(dout, self.w.T)
        # 权重经过的是乘法器单元,对数据x求导则让输出dout乘以权重
        # 对权重求导则让dout乘以数据x
        # 偏置经过加法器单元,对b求导就等于对dout求导
        self.dw = np.dot(self.x.T, dout)
        self.db = np.sum(dout, axis=0)

        return dx


'''
# 就是这个s只支持输入是一维向量的oftmax函数,害我调了俩小时bug```
def softmax(a):
    c = np.max(a)
    exp_a = np.exp(a-c)  # 防溢出
    sum_exp_a = np.sum(exp_a)
    y = exp_a / sum_exp_a

    return y'''

# 支持输入二维数据的softmax,即mini-batch批量输入
def softmax(x):
    if x.ndim == 2:
        x = x.T
        x = x - np.max(x, axis=0)
        y = np.exp(x) / np.sum(np.exp(x), axis=0)
        return y.T

    x = x - np.max(x) # 溢出对策
    return np.exp(x) / np.sum(np.exp(x))

# 支持mini-batch批量输入的交叉熵误差
def cross_entropy_error(y, t):
    if y.ndim == 1:
        # 如果y是一维数组,即不是批处理(mini-batch)输入,而是单条数据输入
        # 则确认把t,y转变为行向量
        t = t.reshape(1, t.size)
        y = y.reshape(1, y.size)

    # 监督数据是one-hot-vector的情况下,转换为正确解标签的索引
    if t.size == y.size:
        t = t.argmax(axis=1)  # 得到每行最大值的数的索引,t由(100, 10)变为(100,)

    batch_size = y.shape[0]

    temp = -np.sum(np.log(y[np.arange(batch_size), t] + 1e-7)) / batch_size
    # temp是batch_size个输入数据的损失函数值的总和
    
    return temp


def mean_squared_error(y, t):
    return 0.5 * np.sum((y-t)**2)

class SoftmaxWithLoss:
    def __init__(self):
        self.loss = None
        self.y = None
        self.t = None  # one-hot vector

    def forward(self, x, t):
        self.t = t
        self.y = softmax(x)
        self.loss = cross_entropy_error(self.y, self.t)

        return self.loss

    def backward(self, dout=1):
        batch_size = self.t.shape[0]
        dy = (self.y - self.t) / batch_size

        return dy

# 所有层的backward()函数的输入参数都只有从后部送来的梯度,依次反着往前传
# 最尾部开始的梯度是1,所以softmaxwithloss层的输入参数是dout=1

由于反向传播时使用了mini-batch, 所以输入不再是一维向量,每个激活函数的输入要考虑到一次输入多条数据的矩阵输入/批输入情况,否则计算会出错又很难找到错误根源。

# TwoLayerNet.py
# 2层网络,1个隐层
# 反向传播法求梯度


import numpy as np
from collections import OrderedDict
# 有序字典,NN的层必须保存为有序字典变量以实现前向反向的依序处理
from BackPropagation import *
# 导入定义affine,relu,softmaxwithloss层的类

# 数值梯度的实现,类内的数值梯度方法需要调用这个方法
'''
# 这个方法只适用于输入x是一维向量的
不适用于输入是多维的,如权重矩阵,所以NN中不常用
def numerical_gradient(f, x):
    h = 1e-3
    grad = np.zeros_like(x) # 生成和x形状一样的数组,元素初始化为0

    for idx in range(x.size):
        tmp_val = x[idx]
        # 计算f(x + h)
        # 梯度是所有偏导数构成的向量,求一个变量的偏导只能让这个变量加上微小变化h
        # 其他变量不能加,所以要用for loop
        x[idx] = tmp_val + h
        fxh1 = f(x)

        # 计算f(x - h)
        x[idx] = tmp_val - h
        fxh2 = f(x)

        grad[idx] = (fxh1 - fxh2) / (2*h)
        x[idx] = tmp_val # 还原值
    return grad
'''



# 这是可以接受输入是矩阵的数值梯度计算函数
# 利用numpy的nditer对象实现多维索引
def numerical_gradient(f, x):
    h = 1e-4  # 0.0001
    grad = np.zeros_like(x)

    it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
    while not it.finished:
        idx = it.multi_index
        tmp_val = x[idx]
        x[idx] = float(tmp_val) + h
        fxh1 = f(x)  # f(x+h)

        x[idx] = tmp_val - h
        fxh2 = f(x)  # f(x-h)
        grad[idx] = (fxh1 - fxh2) / (2 * h)

        x[idx] = tmp_val  # 还原值
        it.iternext()

    return grad


class TwoLayerNet:

    def __init__(self, input_size, hidden_size, output_size, weight_init_std=0.01):
        self.params = {}
        self.params['w1'] = weight_init_std * \
                            np.random.randn(input_size, hidden_size)
        # 权重初始化为高斯分布
        self.params['b1'] = np.zeros(hidden_size)  # 偏置初始化为0
        self.params['w2'] = weight_init_std * \
                            np.random.randn(hidden_size, output_size)
        self.params['b2'] = np.zeros(output_size)

        # 生成层,用层进行模块化地实现NN非常便利
        # 可以像组装乐高积木一样组装任意层数的NN
        self.layers = OrderedDict()  # 有序字典
        self.layers['Affine1'] = \
            Affine(self.params['w1'], self.params['b1'])
        self.layers['Relu1'] = Relu()
        self.layers['Affine2'] = \
            Affine(self.params['w2'], self.params['b2'])
        self.lastlayer = SoftmaxWithLoss()

    def predict(self, x):
        for layer in self.layers.values():
            # 有序字典变量共3个键值对,affine1, relu1, affine2
            x = layer.forward(x)

            # x是输出层的affine2的输出,未经过softmax和损失计算
        return x

    def loss(self, x, t):
        y = self.predict(x)
        # y是输出层的affine2的输出,未经过softmax和损失计算
        return self.lastlayer.forward(y, t)

    def accuracy(self, x, t):
        y = self.predict(x)
        y = np.argmax(y, axis=1)
        if t.ndim != 1:
            t = np.argmax(t, axis=1)

        accuracy = np.sum( y==t ) / float(x.shape[0])
        return accuracy

    def gradient(self, x, t):
        # 基于反向传播的解析求梯度
        # forward
        self.loss(x, t)
        # 到此损失计算结束,则前向的一次运算完成,开始反向求梯度

        # backward
        dout = 1
        dout = self.lastlayer.backward(dout)
        # 先经过softmaxwithloss层的反向梯度计算

        layers = list(self.layers.values())
        layers.reverse()  # 列表反序
        for layer in layers:
            # 依次经过affIne2,relu1,affine1的反向梯度计算
            dout = layer.backward(dout)

        grads = {}
        grads['w1'] = self.layers['Affine1'].dw
        grads['b1'] = self.layers['Affine1'].db
        grads['w2'] = self.layers['Affine2'].dw
        grads['b2'] = self.layers['Affine2'].db

        return grads

    def numerical_gradient(self, x, t):
        loss_w = lambda w: self.loss(x, t)

        grads = {}

        grads['w1'] = numerical_gradient(loss_w, self.params['w1'])
        grads['b1'] = numerical_gradient(loss_w, self.params['b1'])
        grads['w2'] = numerical_gradient(loss_w, self.params['w2'])
        grads['b2'] = numerical_gradient(loss_w, self.params['b2'])

        return grads
  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值