数学建模(三)SARS的传播(03年A题)

本文参考和学习的论文的作者是赵千 苏学渊 宋运吉

题目到全国大学生数学建模竞赛网站下载。

本题要建立传染病模型。上网一查,最经典的传染病模型是SIR模型,出自1760年伯努利家族的丹尼尔.伯努利对天花传播规律的研究。

本题主要使用微分方程进行建模

(一)梳理题目

在这里插入图片描述
看完题想了半天,只想到像早期模型那样做曲线拟合,数学模型的建立有些无从下手,想建不会建,抓心挠腮···

(二)Highlights which makes this paper stands out

(1)对早期模型拟合曲线的残差分析

拟合模型一定要用残差分析绘制残差图来分析拟合效果。比只是看图说话好。

在这里插入图片描述

  • eie_i是第i天的计算值和实际值的残差
  • eie_i^*是减去期望Eei=0E(e_i)=0,再除以残差的标准差得到的标准化残差
  • 标准化残差服从标准正态分布
  • 美中不足的是!!!
    没有解释为什么用这个式子作为残差的标准差的估计值。。。一般情况下,样本标准差的无偏估计应该是:
    σ^=inei2n1=in(yiyi^)2n1\hat{\sigma}=\sqrt{\frac{\sum_{i}^{n}e_i^2}{n-1}}=\sqrt{\frac{\sum_{i}^{n}(y_i-\hat{y_i})^2}{n-1}}
    如读者朋友知道原因,请评论告知,非常感谢
    在这里插入图片描述

论文绘制的残差图表明早期模型只有前期拟合效果较好,中后期都与实际情况偏离较大。

(2)模型假设和符号定义

这个假设写得简直太数学太专业了,为后面用微分方程建模埋下了十足的伏笔啊。
在这里插入图片描述
这6个关键变量的找出,是不容易的。
在这里插入图片描述

(2)基于SIR模型建立新模型

基于一个经典模型,成功率较高,又有更多可参考的资料。
SIR简单地把一个城市的人口分为三类,三类的状态转移图精准地刻画了传染病的传播过程。
在这里插入图片描述

利用微分方程组建立数学模型,这也是对上图的数学描述:

  • dSdt<0\frac{dS}{dt}<0,因为S类(易感类,能被感染的人群)随疫情发展减少。
  • 其它数学公式论文中很清晰
    在这里插入图片描述

(3)求解模型

求解可以说是很考验数学功底了。深入挖掘模型中方程的关系和隐含信息。

模型里有3个微分方程。联立(1)和(2),得到了参数λ,v\lambda,v必须满足的条件。

但这里对σS>1\sigma S 必须>1的解释有点不清楚,可以这样说:
{σS1,dIdS0,SIσS<1,dIdS>0,SI\left\{ \begin{aligned} \sigma S\geq1,则\frac{dI}{dS}\leq0,则S和I变换方向相反,符合实际\\ \sigma S<1,则\frac{dI}{dS}>0,则S和I变换方向相同,不符实际 \end{aligned} \right.
所以必须有σS1\sigma S \geq1,当然也有σS01\sigma S_0 \geq1
在这里插入图片描述

下面的推导说明S(t)tS(t)|_{t\to\infty}(0,1σ)(0,\frac1{\sigma})有唯一解:
推导并不难,都是最简单的微分知识。
在这里插入图片描述
然后根据实际数据就得到了σ\sigma必须小于1的结论:
在这里插入图片描述

(4)用导数为0划分疫情发展的四个阶段

在这里插入图片描述在这里插入图片描述

(5)根据实际设计三个关键函数

这才是体现智商和拉开区分度的重要赛点!!!前面那些都是小亮点,这个是闪瞎眼睛的关键。
论文也说了,疫情的发展要分阶段研究,各个参数在不同阶段的取值和变化规律(函数)是不同的,所以用分段函数来描述是符合实际的。

平均传染期函数:

在这里插入图片描述

就诊率函数:
在这里插入图片描述

平均接触率函数:
在这里插入图片描述

模型预测效果图:

在这里插入图片描述

©️2020 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值